Enabling Uncertainty Estimation in Iterative Neural Networks
Publications associées (53)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
The recent developments of deep learning cover a wide variety of tasks such as image classification, text translation, playing go, and folding proteins.All these successful methods depend on a gradient-based learning algorithm to train a model on massive a ...
EPFL2023
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
Advances in scanning systems have enabled the digitization of pathology slides into Whole-Slide Images (WSIs), opening up opportunities to develop Computational Pathology (CompPath) methods for computer-aided cancer diagnosis and prognosis. CompPath has be ...
During the Artificial Intelligence (AI) revolution of the past decades, deep neural networks have been widely used and have achieved tremendous success in visual recognition. Unfortunately, deploying deep models is challenging because of their huge model s ...
In recent years, there has been a significant revolution in the field of deep learning, which has demonstrated its effectiveness in automatically capturing intricate patterns from large datasets. However, the majority of these successes in Computer Vision ...
To obtain a more complete understanding of material microstructure at the nanoscale and to gain profound insights into their properties, there is a growing need for more efficient and precise methods that can streamline the process of 3D imaging using a tr ...
Interpretability for neural networks is a trade-off between three key requirements: 1) faithfulness of the explanation (i.e., how perfectly it explains the prediction), 2) understandability of the explanation by humans, and 3) model performance. Most exist ...
To predict the response of masonry buildings to various types of loads, engineers use finite element models, specifically solid-element and macro-element models. For predicting masonry responses to seismic events in particular, equivalent frame models-a su ...