Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Gestion des donnéesLa gestion des données est une discipline de gestion qui tend à valoriser les données en tant que ressources numériques. La gestion des données permet d'envisager le développement d'architectures, de réglementations, de pratiques et de procédures qui gèrent correctement les besoins des organismes sur le plan de tout le cycle de vie des données. Les données sont, avec les traitements, l'un des deux aspects des systèmes d'information traditionnellement identifiés, et l'un ne peut aller sans l'autre pour un management du système d'information cohérent.
Exploration de donnéesL’exploration de données, connue aussi sous l'expression de fouille de données, forage de données, prospection de données, data mining, ou encore extraction de connaissances à partir de données, a pour objet l’extraction d'un savoir ou d'une connaissance à partir de grandes quantités de données, par des méthodes automatiques ou semi-automatiques.
Aide au diagnostic médicalUne aide au diagnostic médical (ou diagnostic assisté par ordinateur) est un système d'aide à la décision médicale utilisé dans le processus du diagnostic médical, qui est composé d'une base de données et d'un moteur de recherche. Il donne accès aux informations de la base de données, et peut proposer des diagnostics différentiels en fonction de données pré-renseignées après un examen clinique, des estimations pronostiques, ou signaler des informations manquantes pour établir un diagnostic. Catégorie:Base
Rule-based machine learningRule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Learning to rankLearning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item.
Research data archivingResearch data archiving is the long-term storage of scholarly research data, including the natural sciences, social sciences, and life sciences. The various academic journals have differing policies regarding how much of their data and methods researchers are required to store in a public archive, and what is actually archived varies widely between different disciplines. Similarly, the major grant-giving institutions have varying attitudes towards public archival of data.
Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Programmation logique inductiveLa programmation logique inductive (ILP de l'anglais Inductive Logic Programming) est un sous-domaine de l'apprentissage automatique basée sur la programmation logique. À partir d'un ensemble de connaissances préalables et de résultats attendus, divisés en exemples positifs et négatifs, un système ILP déduit un programme logique hypothétique qui confirme les exemples positifs et infirme les exemples négatifs. On peut résumer le principe de fonctionnement d'un système ILP par le schéma suivant : exemples positifs + exemples négatifs + connaissances préalables ⇒ programme hypothétique.