Redresseur (réseaux neuronaux)vignette|Graphique de la fonction Unité Linéaire Rectifiée En mathématiques, la fonction Unité Linéaire Rectifiée (ou ReLU pour Rectified Linear Unit) est définie par : pour tout réel Elle est fréquemment utilisée comme fonction d'activation dans le contexte du réseau de neurones artificiels pour sa simplicité de calcul, en particulier de sa dérivée. Un désavantage de la fonction ReLU est que sa dérivée devient nulle lorsque l'entrée est négative ce qui peut empêcher la rétropropagation du gradient.
AdaBoostAdaBoost (ou adaptive boosting) est, en intelligence artificielle et en apprentissage automatique, un méta-algorithme de boosting introduit par Yoav Freund et Robert Schapire. Il peut être utilisé en association avec de nombreux autres types d'algorithmes d'apprentissage afin d'en améliorer les performances. Les sorties des autres algorithmes (appelés classifieurs faibles) sont combinées en une somme pondérée qui représente la sortie finale du classeur boosté.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Gestion des exigencesLa gestion des exigences consiste à gérer les exigences hiérarchisées d'un projet, à détecter les incohérences entre elles et à assurer leur traçabilité. Dans de nombreux métiers, l'expression de ces exigences donne lieu à une quantité de documents dont la cohérence et la qualité conditionnent le succès ou l'échec des projets concernés. Il existe des logiciels spécialisés qui permettent d'aider à la réalisation de cette activité.
Test utilisateurUn test utilisateur, ou test d’utilisabilité, est une méthode permettant d'évaluer un produit en le faisant tester par des utilisateurs. Le plus souvent, il s'agit de produits du domaine informatique (par exemple : un logiciel ou un site web) dans le cadre de l'intervention ergonomique. Elle est considérée comme une démarche indispensable dans la conception de produit, car la plus efficace pour évaluer l'ergonomie d'une application ou d'un site web.
Forêt d'arbres décisionnelsvignette|Illustration du principe de construction d'une forêt aléatoire comme agrégation d'arbre aléatoires. En apprentissage automatique, les forêts d'arbres décisionnels (ou forêts aléatoires de l'anglais random forest classifier) forment une méthode d'apprentissage ensembliste. Ils ont été premièrement proposées par Ho en 1995 et ont été formellement proposées en 2001 par Leo Breiman et Adele Cutler. Cet algorithme combine les concepts de sous-espaces aléatoires et de bagging.
Utility modelA utility model is a patent-like intellectual property right to protect inventions. This type of right is available in many countries but, notably, not in the United States, United Kingdom or Canada. Although a utility model is similar to a patent, it is generally cheaper to obtain and maintain, has a shorter term (generally 6 to 15 years), shorter grant lag, and less stringent patentability requirements. In some countries, it is only available for inventions in certain fields of technology and/or only for products.
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Text-to-image modelA text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description. Such models began to be developed in the mid-2010s, as a result of advances in deep neural networks. In 2022, the output of state of the art text-to-image models, such as OpenAI's DALL-E 2, Google Brain's , StabilityAI's Stable Diffusion, and Midjourney began to approach the quality of real photographs and human-drawn art.
Interface utilisateurL’interface utilisateur est un dispositif matériel ou logiciel qui permet à un usager d'interagir avec un produit informatique. C'est une interface informatique qui coordonne les interactions homme-machine, en permettant à l'usager humain de contrôler le produit et d'échanger des informations avec le produit. Parmi les exemples d’interface utilisateur figurent les aspects interactifs des systèmes d’exploitation informatiques, des logiciels informatiques, des smartphones et, dans le domaine du design industriel, les commandes des opérateurs de machines lourdes et les commandes de processus.