Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
Mechanical oscillators can exhibit modes with ultra-low energy dissipation and compact form factors due to the slow velocity of acoustic waves, and are already used in applications ranging from timing to wireless filters. Over the past decade, novel ways i ...
Quantum computing not only holds the potential to solve long-standing problems in quantum physics, but also to offer speed-ups across a broad spectrum of other fields. Access to a computational space that incorporates quantum effects, such as superposition ...
In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.Quantum mechanics gives predictions that are inconsistent with local realism.The experiment proving this fact (Bell, 1964) gives a quantum protoco ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
Parametric amplifiers play a crucial role in modern quantum technology by enabling the enhancement of weak signals with minimal added noise. Traditionally, Josephson junctions have been the primary choice for constructing parametric amplifiers. Nevertheles ...
Superconducting qubits are among the most advanced candidates for achieving fault-tolerant quantum computing. Despite recent significant advancements in the qubit lifetimes, the origin of the loss mechanism for state-of-the-art qubits is still subject to i ...
Quantum sensors and qubits are usually two-level systems (TLS), the quantum analogues of classical bits assuming binary values 0 or 1. They are useful to the extent to which superpositions of 0 and 1 persist despite a noisy environment. The standard prescr ...
Randomized measurement protocols such as classical shadows represent powerful resources for quantum technologies, with applications ranging from quantum state characterization and process tomography to machine learning and error mitigation. Recently, the n ...
Combining superconducting resonators and quantum dots has triggered tremendous progress in quantum information, however, attempts at coupling a resonator to even charge parity spin qubits have resulted only in weak spin-photon coupling. Here, we integrate ...