AutomationL'automation consiste à utiliser les services d'un logiciel dans une application informatique. L'automation peut donc être considérée comme une procédure d'automatisation. En informatique musicale, dans un séquenceur, l'automation consiste à programmer des changements de réglages pendant la lecture d'un morceau, comme la variation de volume d'une piste audio. Cette mise en place peut se faire par mimétisme : le logiciel enregistre en temps réel des mouvements venant de l'utilisateur pour les reproduire lors des prochaines exécutions du morceau.
Robotique industriellevignette|droite|Un robot industriel Kawasaki FS-03N, robot de soudage La robotique industrielle est officiellement définie par l'Organisation Internationale de Normalisation (ISO) comme étant un système commandé automatiquement, multi-applicatif, reprogrammable, polyvalent, manipulateur et programmable sur trois axes ou plus. Les applications typiques incluent les robots de soudage, de peinture et d'assemblage. L'avantage de la robotique industrielle est sa rapidité d'exécution et sa précision ainsi que la répétition de cette précision dans le temps.
Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.
Linear fractional transformationIn mathematics, a linear fractional transformation is, roughly speaking, an invertible transformation of the form The precise definition depends on the nature of a, b, c, d, and z. In other words, a linear fractional transformation is a transformation that is represented by a fraction whose numerator and denominator are linear. In the most basic setting, a, b, c, d, and z are complex numbers (in which case the transformation is also called a Möbius transformation), or more generally elements of a field.
Linear canonical transformationIn Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL2(R) on the time–frequency plane (domain). As this defines the original function up to a sign, this translates into an action of its double cover on the original function space.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Projective linear groupIn mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.