Panel analysisPanel (data) analysis is a statistical method, widely used in social science, epidemiology, and econometrics to analyze two-dimensional (typically cross sectional and longitudinal) panel data. The data are usually collected over time and over the same individuals and then a regression is run over these two dimensions. Multidimensional analysis is an econometric method in which data are collected over more than two dimensions (typically, time, individuals, and some third dimension).
ÉvaluationSelon Michel Vial, l'évaluation est le rapport que l'on entretient avec la valeur. L'homme est porteur de valeurs qu'il a reçu plus ou moins consciemment, qu'il convoque pour mesurer la valeur d'objets ou de produits, pour contrôler les procédures (vérifier leur conformité) ou encore interroger (rendre intelligible) le sens de ses pratiques : s'interroger sur la valeur, rendre intelligible les pratiques au moyen de l'évaluation située. Plus généralement, l'évaluation est un processus mental de l'agir humain.
Méthodes qualitativesEn sciences sociales, les méthodes qualitatives regroupent un ensemble de méthodes de recherche utilisées dans les études qualitatives. Elles trouvent leur utilité notamment en sciences humaines et sociales. Elles laissent délibérément de côté l'aspect quantitatif pour gagner en profondeur dans l'analyse de l'objet d'étude. Pour cela diverses techniques, fondées sur l'administration de questions ouvertes et l'exploration du langage, sont mises en œuvre : les entretiens (notamment de type semi-directifs), les observations participantes et les « focus groupes » (ou entretien collectif), sont les plus utilisés.
Facteur de confusionEn statistique, un facteur de confusion, ou facteur confondant, ou encore variable confondante, est une variable aléatoire qui influence à la fois la variable dépendante et les variables explicatives. Ces facteurs sont notamment à l'origine de la différence entre corrélation et causalité (Cum hoc ergo propter hoc). En santé publique, c'est une variable liée à la fois au facteur de risque et à la maladie ou à un autre évènement de l'étude lié à la santé, ce qui est susceptible d'induire un biais dans l'analyse du lien (entre maladie et facteur de risque), produisant ainsi de fausses associations.
Inférence causaleL'inférence causale est le processus par lequel on peut établir une relation de causalité entre un élément et ses effets. C'est un champ de recherche à la croisée des statistiques, de l'économétrie, de l'épidémiologie, de la méthodologie politique et de l'intelligence artificielle. En 1920, Sewall Wright développe la première path analysis. Cette analyse graphique des relations de causalité entre les variables constitue selon Judea Pearl un travail pionnier dans l'inférence causale.
Causal modelIn the philosophy of science, a causal model (or structural causal model) is a conceptual model that describes the causal mechanisms of a system. Several types of causal notation may be used in the development of a causal model. Causal models can improve study designs by providing clear rules for deciding which independent variables need to be included/controlled for. They can allow some questions to be answered from existing observational data without the need for an interventional study such as a randomized controlled trial.