Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Compréhension du langage naturelvignette|L'apprentissage de la lecture par Sigurður málari, siècle. La compréhension du langage naturel (NLU en anglais) ou linterprétation en langage naturel (NLI) est une sous-rubrique du traitement de la langue naturelle en intelligence artificielle qui traite de la compréhension en lecture automatique. La compréhension du langage naturel est considérée comme un problème difficile en IA. Il existe un intérêt commercial considérable dans ce domaine en raison de son application à la collecte de nouvelles, à la catégorisation des textes, à l'activation vocale, à l'archivage et à l'analyse de contenu à grande échelle.
Modèle de fondationUn modèle de fondation est un modèle d'intelligence artificielle de grande taille, entraîné sur une grande quantité de données non étiquetées (généralement par apprentissage auto-supervisé ). Le modèle résultant peut être adapté à un large éventail de tâches en aval (downstream tasks en anglais). Depuis leur introduction en 2018, les modèles de fondation ont induit une transformation majeure dans la manière de construire les systèmes d'IA. Les premiers modèles de fondation étaient de grands modèles de langage pré-entraînés, notamment BERT et GPT-3.