We prove that the number of rational points of bounded height on certain del Pezzo surfaces of degree 1 defined over Q grows linearly, as predicted by Manin's conjecture. ...
We state conditions under which the set S(k) of k-rational points on a del Pezzo surface S of degree 1 over an infinite field k of characteristic not equal to 2 or 3 is Zariski dense. For example, it suffices to require that the elliptic fibration S -> P-1 ...
We study a problem on specializations of multiples of rational points on elliptic curves analogous to the Mersenne problem. We solve this problem when descent via isogeny is possible by giving explicit bounds on the indices of prime power terms in elliptic ...
We establish estimates for the number of solutions of certain affine congruences. These estimates are then used to prove Manin's conjecture for a cubic surface split over Q whose singularity type is D-4. This improves on a result of Browning and answers a ...