Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
Within the context of contemporary machine learning problems, efficiency of optimization process depends on the properties of the model and the nature of the data available, which poses a significant problem as the complexity of either increases ad infinit ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...
We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature rec ...
Association for the Advancement of Artificial Intelligence (AAAI)2023
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
The monumental progress in the development of machine learning models has led to a plethora of applications with transformative effects in engineering and science. This has also turned the attention of the research community towards the pursuit of construc ...
Programming intelligent robots requires robust controllers that can achieve desired tasks while adapting to the changes in the task and the environment. In this thesis, we address the challenges in designing such adaptive and anticipatory feedback controll ...
There are various possibilities to realize coil winding designs for an inductive power transfer system. In order to achieve high power transfer efficiency and power density and explore trade-offs between the two, design optimization around the coil link is ...
Designing turbocompressors is a complex and challenging task, as it involves balancing conflicting objectives such as efficiency, stability, and robustness against manufacturing deviations. This paper proposes an integrated design methodology for turbocomp ...
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate the dynamics of many-body quantum systems classically. By systematically studying the relevant stochastic estimators, we are able to: (i) prove that the most us ...
Verein Forderung Open Access Publizierens Quantenwissenschaf2023