**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Heat Transfer and Pressure Drop in the Dryout Region of Intube Evaporation with Refrigerant/Lubricant Mixtures.

Résumé

A summary of the objectives and conclusions reached in this project are: •A litterature search on post dryout heat transfer for pure refrigerants and for refrigerant-oil mixtures was performed and a comprehensive review written (Chapters 9, 10, and 11); •The correct thermodynamic definition of the heat transfer coefficient for evaporation of refrigerant-oil mixtures was presented and then used in the project, i.e. defining the heat transfer coefficient using the local bubble point temperature Tbub of the refrigerant-oil mixture rather than with the saturation temperature of the pure refrigerant Tsat incorrectly used in prior studies (Chapter 3); •A new generalized approach, that is simple to implement, was developed for predicting bubble point temperatures of refrigerant-oil mixtures for miscible oils that can be applied to any refrigerant-oil combination and is accurate over the local oil concentration range from 0-50 wt.% oil range confronted in direct- expansion evaporators with 0-5 wt.% oil in their refrigerant charge (Chapter 4); •A new thermodynamic method for preparation of temperature-enthalpy- vapor quality (T-h-x) curves for refrigerant-oil mixtures for general application was developed and validated against test data (Chapters 5 and 6), including a simple expression for calculating local oil concentrations as a function of vapor quality; •New, accurate thermodynamic methods for preparation of temperature-enthalpy-vapor (T-h-x) curves for the refrigerant blend R-407C and R-407C/oil mixtures were developed for thermal design of evaporators and for the present experimental test, and was validated against measured test data (Chapter 12); •Recommendations were made on how to include oil effects and refrigerant-oil T-h-x curves into evaporator design methods (Chapter 7); •The effects of oil on set-point parameters for control devices were analyzed and some recommendations made (Chapter 8); •An online oil concentration measurement system was perfected using a high accuracy density flowmeter that allowed oil concentrations to be measured accurately and continuously during experiments, such that oil holdup in the heat transfer test sections at high vapor quality could be identified and the correct inlet oil concentrations be measured, and thus utilized to reduce experimental data; a simpler industrial method for applying the measurement system was also developed and presented (Chapter 15); •Experimental results (local heat transfer coefficients, two-phase pressure drops and some two-phase flow patterns) were obtained for R-134a and R-134a/oil mixtures evaporating in plain and microfinned tubes over a wide range of test conditions (Chapters 16 and 17); •Experimental results (local heat transfer coefficients, two-phase pressure drops and some two-phase flow patterns ) were obtained for R-407C and R- 407C/oil mixtures evaporating in plain and microfinned tubes over a wide range of test conditions (Chapters 18 and 19); •The recently proposed flow boiling model and flow pattern map of Kattan-Thome-Favrat, that importantly models heat transfer coefficients based on local flow pattern and predicts the onset of dryout in horizontal tubes and local heat transfer coefficients in partial dryout regimes, was described in detail; the flow pattern map is also useful to designers wishing to design in specific flow pattern regimes and avoid inefficient heat transfer regimes, such as mist flow and stratified flow (Chapters 20 and 21); •The stratified-wavy flow regime model was modified based on the new test data at high vapor quality for pure R-134a and R-407C, which increased the accuracy of the method significantly in this flow regime, now referred to as the “modified” Kattan- Thome-Favrat flow boiling model (Chapter 22); •The modified Kattan- Thome-Favrat flow boiling model and flow pattern map were shown to accurately predict R-407C heat transfer and flow pattern data and hence is recommended for industrial use for designing direct-expansion evaporators with refrigerant blends [the original version was also verified for R-402 and R-404A blends, see Chapter 21] (Chapter 22); •The effect of local refrigerant-oil viscosity on liquid-phase convection in flow boiling heat transfer and on flow patterns was successfully incorporated into the modified Kattan-Thome-Favrat model, establishing the first flow boiling design method that predicts oil effects on heat transfer (with quite reasonable accuracy too), and included a simple method for calculating the values of µref-oil for use in the model (Chapter 23); •The oil effects on microfin heat transfer coefficients were analyzed and heat transfer augmentation ratios were determined for R-134a/oil and R-407C/oil mixtures (Chapter 25); •Plain tube, two-phase pressure drop gradients for R-134a and R-407C at three mass velocities were compared to the Friedel frictional two-phase pressure drop correlation, attaining accurate results and also microfin pressure drop augmentation ratios were determined (Chapter 25); •The ratio of [µoil/µref]mw, derived from the Arrhenius logrithmic viscosity mixing rule and local oil concentration w, was shown to accurately predict the effect of oil on two-phase pressure drop gradients at high vapor qualities, with an empirical exponent m = 0.18355 found for R-134a/oil mixtures (no foaming) and an empirical expression for m for R-407C/oil mixtures (with foaming). This ratio incorporated into the Friedel correlation accurately predicts two-phase pressure drops of evaporating refrigerant-oil flows (Chapter 25).

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (106)

Chargement

Chargement

Chargement

Daniel Favrat, John Richard Thome, Olivier Zürcher

After an experimental study of refrigerants HFC-134a, HCFC-123, HFC- 404A and HFC-407C, and considerable modifications to the test stand, LENI has undertaken a new experimental program and has assembled a large new database for evaporation of ammonia and two ammonia-oil mixtures (1% and 3% wt. oil) inside horizontal tubes with smooth and enhanced surfaces. This work extends the current database to include a refrigerant in which there is a marked renewal of interest. The comparison of the ammonia results with the flow boiling heat transfer model of Kattan et al.(1997) will allow the model to be validated to a much broader range of application The experimental tests on smooth tubes without oil covered a wide range of mass velocity (20-140 kg/(m2s)) and heat flux (5-70 kW/m2). However some additional tests on evaporation for a wide range of mass velocities at constant vapor quality are still required as part of the database in order to investigate flow pattern transitions and to develop a new version of the Kattan et al.(1997) model with a wider field of application to fully stratified and stratified-wavy flow patterns. The predicitons of the heat transfer coefficient for the annular and intermittent flow patterns by the Kattan et al.(1997) model produced very convincing results (average deviation of -11.9% and standard deviation of 6.33%) calculated over 172 measurement points), in spite of the fact that the thermophysical characteristics of ammonia differ considerably from those of traditional refrigerants. The effect of 1% and 3% oil on plain and microfin tube heat transfer at 50 and 80 kg/(m2s) was similar to that found for annular flows with previous refrigerants, i.e. little influence at low to intermediate vapor qualities but a substantial fall off in performance at vapor qualities greater that 70%. At the lowest mass velocity of 20 kg/(m2s), the 3% oil tended to increase the plain tube performance while for the microfin tube the oil holdup in the test section was so severe for both 1% and 3% oil that the heat transfer coefficients fell towards zero at vapor qualities greater than 40%. Thus, very low mass velocities when using microfins should be avoided since a little oil will invariably be present in an operating unit. A study on two-phase pressure drops in tests without oil and with nominal oil concentrations of 1% and 3% showed that they remain the same or decrease in the presence of oil. The decrease is surprising result and were confirmed by several independent means of measurement, and merit more future in- depth study.

1998Concepts associés (37)

vignette|alt=Autour d'un feu, des mains reçoivent sa chaleur par rayonnement (sur le côté), par convection (au-dessus de ses flammes) et par conduction (à travers un ustensile en métal).|Les modes de

Le coefficient de transfert thermique ou coefficient de transmission thermique est un coefficient quantifiant le flux d'énergie traversant un milieu, par unité de surface, de volume ou de longueur. L'

vignette|Tuyaux de fluide frigorigène (2007).
Un fluide frigorigène (ou réfrigérant) est un fluide qui permet la mise en œuvre d'un cycle frigorifique. Il peut être pur ou être un mélange de fluides p

The substitution of CFC refrigerants in refrigeration systems, heat pumps and organic Rankine cycles, requests a good knowledge of the heat transfer and pressure drop properties of substitute fluids. A contribution to this international effort is proposed with the study of two hydrofluorocarbon refrigerants (HFC-134a and the zeotropic mixture HFC-407C) and the study of the natural refrigerant ammonia. The HFCs have been experimentally tested on the first test rig developed in the Laboratory of Industrial Energy Systems (LENI) which was substantially modified to cope with ammonia, both in terms of safety requirements and operational conditions. The experimental test section is composed of two concentric tubes, with in tube evaporation of the refrigerant inside the inner tube of counter-current Annular water heating. A new database of the local heat transfer coefficients for the refrigerants HFC-134a, HFC-407C and ammonia together with pressure drop measurements has been collected and used to define and calibrate a new and more general heat transfer model. The two HFC refrigerants have been tested on the test rig developed by Kattan [36]; due to the chemical and the thermophysical properties of ammonia, a new test rig has been designed for the ammonia tests and a new calculation procedure based on the mean temperature measurement on the tube wall has been used. The experimental database covers evaporation tests on plain and on microfin tubes, and with nominal oil concentrations varying from 0 to 5 [%] (by wt.). Detailed modeling is concentrated on the tests on plain tube without oil. Each of the three refrigerants has been evaporated at 4[°C]. The other experimental conditions for the HFCs refrigerants were an inside tube diameter of 10.92[mm], a heat flux range of 2 – 5 [kW/m2] and three mass velocities of G = 100, 200, 300 [kg/(m2s)] visualized as Stratified-Wavy flows (G = 100[kg/(m2s)]), and mainly Annular for the higher mass velocities (G = 200, 300[kg/(m2s)]). The other global conditions for ammonia were an internal tube diameter of 14.00 [mm], a heat flux range of 5 – 70[kW/m2] and eleven mass velocities of G = 10,20,30,40,45,50,55,60,80,120,140[kg/(m2s)], corresponding to Stratified, Stratified-Wavy, Intermittent and Annular flow patterns; complementary tests, varying the mass velocity at constant vapor qualities (x = 20,50,80[%]), have been made in particular to better characterize boundaries between flow patterns. The flow patterns are visualized through glass sections at both ends of the 3.1 [m] long test tube. An extensive review of void fraction models with sensitivity analysis on the actual available flow pattern map has been made. From the 17 correlations reviewed, the models of Taitel-Dukler [71] and Rouhani [79] have been used. Other improvements to the threshold criteria of the Stratified-Wavy to Annular transition, lead to an accurate diabatic map to predict the flow patterns and their transition for very different families of fluids like HFC's and ammonia. A new approach in the prediction of two-phase flow heat transfer has been proposed through the study of each flow pattern separately, according to a new criterion defining the onset of nucleate boiling as a function of the critical convective heat transfer coefficient representative of the location where nucleate boiling might occur. A function based on a pseudo Biot number allows, from the mean heat flux around the tube periphery, to base the model on two different mean heat fluxes applied respectively to the parts of the perimeter in contact with the liquid and the vapor in stratified types of flow. Considering pure convective heat transfer, or mixed convective and nucleate heat transfer, this division allows the use of a common criterion to be applied to each flow pattern. The two-phase flow heat transfer coefficient has finally been obtained as a weighted mean function of the vapor and the liquid heat transfer coefficient with respect to their contact surface with the heated tube. Based on the database of refrigerants HFC-134a and ammonia, the standard deviation of the new heat transfer model is of σ = 27.9[%]. Even if the database showed that the flow conditions were close to, or in the turbulent to laminar flow transition, and even if the major part of the experimental points were purposely obtained close to the various flow pattern transitions, the new model showed very good agreement with the experimental database. Due to the precision of the new flow pattern map and the effectiveness of the onset on nucleate boiling criterion, this new heat transfer model accurately predicts the heat transfer conditions during evaporation. Finally, a new method to model separated flows is proposed, based on partial hydraulic diameters and a mean interface velocity.

Daniel Favrat, John Richard Thome, Olivier Zürcher

The substitution of CFC refrigerants in refrigeration systems, heat pumps and organic Rankine cycles for heat recovery, requires good methods for predicting heat transfer of substitute fluids. The measurements in the LENI test facility (concentric tubes with water flowing in a countercurrent flow) with HFC 407C, HFC 134a, HCFC 123, HFC 404A and HFC/HCFC 402A provide a new data band for new refrigerants, and allow a coherent comparison with old refrigerants CFC 11, CFC 12, CFC/HCFC 502 and with existing correlations. The existing correlations were found to be inadequate. Because of this work, an improved flow pattern map and flow boiling model were developed, which resulted in a substantial progress in the accurate predict of heat transfer in plain, horizontal tubes for refigerants without oil. The Kattan et al. (1996, [6]) correlation was programmed to calculate and compare predicted heat transfer coefficients to the new HFC 407C test data. The flow pattern map proposed by Kattan et al. (1996) was also programmed and compared to flow regimes observed for HFC 407C. It predicted the HFC 407C flow pattern data quite accurately. The original objective of the HFC 407C measurements was the validation of the Kattan et al. (1996) correlation applied to a zeotropic refrigerant blend. Local flow boiling heat transfer coefficients were measured for HFC 407C evaporating inside a microfin and plain tube. In addition, microfin heat transfer augmentation relative to a plain tube was investigated. The presence of oil in the evaporator had a complex effect on heat transfer coefficients. Local flow boiling heat transfer coefficients were measured for refrigerant HFC 407C ester oil mixtures (Mobil EAL Arctic 68). A new thermodynamic approach for modeling mixtures of zeotropic refrigerant blends and lubricating oils was also developed. A very high accuracy, straight vibrating tube type of density flowmeter was used to measure oil concentrations of flowing HFC 407C oil mixtures. The test covered oil concentration from 0.5-5 wt.% oil. A method was proposed to predict thermodynamic and transport properties of the refrigerant-oil mixtures. In addition, a first empirical approach was proposed for predicting heat transfer for boiling of refrigerant-oil mixtures. Based on this work, the following phenomena important to the problem were identified that require further investigation: • oil retention in the evaporator tubes that was found and clearly proved in the present project. • the formation of foam in the HFC 407C/oil mixture (but not in the previous HFC 134a/oil tests) •the effect of oil on flow patterns, in particular stratified and stratified-wavy flows.

1996