In nanometer-sized apertures with charged surfaces, the extension of the electrical double layer results in the electrostatic exclusion of co-ions and enrichment in counterions, which affects the permselectivity of such structures. A modeling of this phenomenon is proposed and is compared with quantitative measurements of the ionic permeability change of a Pyrex nanoslit at low ionic strength. The comparison of experimental results with theoretical predictions justifies that electrostatic forces are the governing forces in nanofluidics.
Federico Grasselli, Andrea Grisafi
Sylvie Roke, Arianna Marchioro, Bingxin Chu