This paper develops a fast algorithm for computing the equilibrium assignment with the perturbed utility route choice (PURC) model. Without compromise, this allows the significant advantages of the PURC model to be used in large-scale applications. We form ...
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...
Most codes of practice adopt a semi probabilistic design approach for the dimensioning and assessment of structures. Accordingly, structural safety is ensured by performing limit state verifications using design values determined with adequately calibrated ...
In this paper, we present a new parameterization and optimization procedure for minimizing the weight of ribbed plates. The primary goal is to reduce embodied CO2 in concrete floors as part of the effort to diminish the carbon footprint of the construction ...
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
Orthogonal group synchronization is the problem of estimating n elements Z(1),& mldr;,Z(n) from the rxr orthogonal group given some relative measurements R-ij approximate to Z(i)Z(j)(-1). The least-squares formulation is nonconvex. To avoid its local minim ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
While momentum-based accelerated variants of stochastic gradient descent (SGD) are widely used when training machine learning models, there is little theoretical understanding on the generalization error of such methods. In this work, we first show that th ...
Non-convex constrained optimization problems have become a powerful framework for modeling a wide range of machine learning problems, with applications in k-means clustering, large- scale semidefinite programs (SDPs), and various other tasks. As the perfor ...
In this paper, we present a spatial branch and bound algorithm to tackle the continuous pricing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced DCMs, like mixed logit or latent class models, are capable of modeling de ...