Communicating sequential processesEn programmation concurrente, Communicating sequential processes (CSP) est une algèbre de processus permettant de modéliser l'interaction de systèmes. CSP intègre un mécanisme de synchronisation basé sur le principe du rendez-vous (détaillé plus loin au travers de la commande d'entrée/sortie). Combinant ce mécanisme à une syntaxe simple et concise, CSP permet l'implémentation rapide des paradigmes classiques de la concurrence, tels que producteurs/consommateurs ou lecteurs/écrivains.
Reconnaissance gestuelleGesture recognition is a topic in computer science and language technology with the goal of interpreting human gestures via mathematical algorithms. It is a subdiscipline of computer vision. Gestures can originate from any bodily motion or state, but commonly originate from the face or hand. Focuses in the field include emotion recognition from face and hand gesture recognition since they are all expressions. Users can make simple gestures to control or interact with devices without physically touching them.
Interacting particle systemIn probability theory, an interacting particle system (IPS) is a stochastic process on some configuration space given by a site space, a countably-infinite-order graph and a local state space, a compact metric space . More precisely IPS are continuous-time Markov jump processes describing the collective behavior of stochastically interacting components. IPS are the continuous-time analogue of stochastic cellular automata.
Modèle graphiqueUn modèle graphique est une représentation d'objets probabilistes. C'est un graphe qui représente les dépendances de variables aléatoires. Ces modèles sont notamment utilisés en apprentissage automatique. Un modèle graphique est un graphe orienté ou non orienté, c'est-à-dire un ensemble, les « sommets », et des liens entre les sommets, les « arêtes ». Chaque sommet représente une variable aléatoire et chaque arête représente une dépendance de ces variables. Dans l'exemple ci-contre, il y a 4 variables aléatoires A, B, C et D.
Modèle génératifvignette|Schéma représentant la différence entre un modèle discriminatif et un modèle génératif. En classement automatique un modèle génératif est un modèle statistique défini par opposition à un modèle discriminatif. Étant donné une variable X à laquelle il doit associer une autre variable Y, le modèle génératif cherchera à décrire la probabilité conditionnelle ainsi que la probabilité puis d'utiliser la formule de Bayes pour calculer la probabilité .
Programmation logique inductiveLa programmation logique inductive (ILP de l'anglais Inductive Logic Programming) est un sous-domaine de l'apprentissage automatique basée sur la programmation logique. À partir d'un ensemble de connaissances préalables et de résultats attendus, divisés en exemples positifs et négatifs, un système ILP déduit un programme logique hypothétique qui confirme les exemples positifs et infirme les exemples négatifs. On peut résumer le principe de fonctionnement d'un système ILP par le schéma suivant : exemples positifs + exemples négatifs + connaissances préalables ⇒ programme hypothétique.
Programmation concurrenteLa programmation concurrente est un paradigme de programmation tenant compte, dans un programme, de l'existence de plusieurs piles sémantiques qui peuvent être appelées threads, processus ou tâches. Elles sont matérialisées en machine par une pile d'exécution et un ensemble de données privées. La concurrence est indispensable lorsque l'on souhaite écrire des programmes interagissant avec le monde réel (qui est concurrent) ou tirant parti de multiples unités centrales (couplées, comme dans un système multiprocesseurs, ou distribuées, éventuellement en grille ou en grappe).