Supervision (informatique)La supervision est une technique industrielle de suivi et de pilotage informatique de procédés de fabrication automatisés. La supervision concerne l'acquisition de données (mesures, alarmes, retour d'état de fonctionnement) et des paramètres de commande des processus généralement confiés à des automates programmables. Dans l'informatique, la supervision est la surveillance du bon fonctionnement d’un système ou d’une activité. À ne pas confondre avec l'hypervision, qui elle correspond à la centralisation des outils de supervision, d’infrastructure, d'applications et de référentiels (ex.
Contrôle de processusLe contrôle de processus est un terme utilisé pour désigner l'ensemble du matériel et des logiciels servant à piloter et surveiller le processus de fabrication de produits. Il est le plus souvent constitué d'une chaîne de moyens (appelée boucle de régulation) : capteurs de mesures physiques ou physico-chimiques : pression, niveau, débit, température, pH, viscosité, turbidité, conductivité... Ces capteurs fournissent aux régulateurs de manière continue ou discrète l'indication directe ou indirecte de l'état du processus.
Système numérique de contrôle-commandevignette|Deux racks de CS3000, un SNCC de Yokogawa. De droite à gauche, dans le rack supérieur : une alimentation, une CPU, une carte bus pour communiquer avec l'autre rack, des cartes d'entrées-sorties ; dans le rack inférieur : idem sauf la CPU. On peut remarquer que la CPU est connectée à deux câbles Ethernet redondants pour communiquer avec d'autres CPU et des PC de supervision. Un système numérique de contrôle-commande (SNCC, ou DCS pour distributed control system en anglais) est un système de contrôle d'un procédé industriel doté d'une interface homme-machine pour la supervision et d'un réseau de communication numérique.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Programmation génétiqueLa programmation génétique est une méthode automatique inspirée par le mécanisme de la sélection naturelle tel qu'il a été établi par Charles Darwin pour expliquer l'adaptation plus ou moins optimale des organismes à leur milieu. Elle a pour but de trouver par approximations successives des programmes répondant au mieux à une tâche donnée. On nomme programmation génétique une technique permettant à un programme informatique d'apprendre, par un algorithme évolutionniste, à optimiser peu à peu une population d'autres programmes pour augmenter leur degré d'adaptation (fitness) à réaliser une tâche demandée par un utilisateur.
Stratégie de régulationUne stratégie (ou topologie) de régulation est, pour un procédé industriel, l'organisation du système de contrôle-commande en vue de maintenir une grandeur physique dans une plage de tolérance donnée. Le choix de stratégie est très important dans les industries de transformation (par exemple les industries chimiques, papetières, agroalimentaires) en raison de la variabilité d'un nombre élevé de grandeurs physiques incidentes (dites « perturbations ») qui y sont présentes.
Chromosome (genetic algorithm)In genetic algorithms (GA), or more general, evolutionary algorithms (EA), a chromosome (also sometimes called a genotype) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population. The genome of an individual consists of one, more rarely of several, chromosomes and corresponds to the genetic representation of the task to be solved.
Gene expression programmingIn computer programming, gene expression programming (GEP) is an evolutionary algorithm that creates computer programs or models. These computer programs are complex tree structures that learn and adapt by changing their sizes, shapes, and composition, much like a living organism. And like living organisms, the computer programs of GEP are also encoded in simple linear chromosomes of fixed length. Thus, GEP is a genotype–phenotype system, benefiting from a simple genome to keep and transmit the genetic information and a complex phenotype to explore the environment and adapt to it.
Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation.
Crossover (genetic algorithm)In genetic algorithms and evolutionary computation, crossover, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population.