Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Sampling theory has prospered extensively in the last century. The elegant mathematics and the vast number of applications are the reasons for its popularity. The applications involved in this thesis are in signal processing and communications and call out ...
We demonstrate that the fatal crash of El Al Flight 1862 might have been avoided by using MPC-based fault-tolerant control. Simulation on a detailed nonlinear model shows that it is possible to reconfigure the controller so that the aircraft is flown succe ...
In the present paper, we study the spatialization of the soundfield in a room, in particular the evolution of room impulse responses as function of their spatial positions. The presented technique allows us to completely characterize the sound field in any ...
We provide an overview of spline and wavelet techniques with an emphasis on applications in pattern recognition. The presentation is divided in three parts. In the first one, we argue that the spline representation is ideally suited for all processing task ...
Many communication systems are {\em bandwidth-expanding}: the transmitted signal occupies a bandwidth larger than the {\em symbol rate}. The sampling theorems of Kotelnikov, Shannon, Nyquist et al. shows that in order to represent a bandlimited signal, it ...
Consider classes of signals that have a finite number of degrees of freedom per unit of time and call this number the rate of innovation. Examples of signals with a finite rate of innovation include streams of Diracs (e.g., the Poisson process), nonuniform ...
Institute of Electrical and Electronics Engineers2002
We analyze the representation of periodic signals in a scaling function basis. This representation is sufficiently general to include the widely used approximation schemes like wavelets, splines and Fourier series representation. We derive a closed form ex ...
Recently a sampling theorem for a certain class of signals with finite rate of innovation (which includes for example stream of Diracs) has been developed. In essence, such non band-limited signals can be sampled at or above the rate of innovation. In the ...
Wavelets and radial basis functions (RBFs) lead to two distinct ways of representing signals in terms of shifted basis functions. RBFs, unlike wavelets, are nonlocal and do not involve any scaling, which makes them applicable to nonuniform grids. Despite t ...
We consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, piecewise polynomials. We demonstrate that by using an adequate sampling kernel and a sampli ...