An Orthogonal Family of Quincunx Wavelets with Continuously Adjustable Order
Publications associées (64)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we use polyharmonic B-splines to build multidimensional wavelet bases. These functions are nonseparable, multidimensional basis functions that are localized versions of radial basis functions. We show that Rabut's elementary polyharmonic B-s ...
We describe a new family of scaling functions, the (α, τ)-fractional splines, which generate valid multiresolution analyses. These functions are characterized by two real parameters: α, which controls the width of the scaling functions; and τ, which specif ...
I. Introduction Wavelets are the result of collective efforts that recognized common threads between ideas and concepts that had been independently developed and investigated by distinct research communities. They provide a unifying framework for decompos ...
In this work, we study the effect of inserting spatially local temporal adaptivity to motion compensated frame adaptive transforms for video coding. Motion compensation aligns the temporal wavelet decomposition along motion trajectories. However, valid tra ...
The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a "true" two-dimensional transform that can c ...
We propose a complex generalization of Schoenberg's cardinal splines. To this end, we go back to the Fourier domain definition of the B-splines and extend it to complex-valued degrees. We show that the resulting complex B-splines are piecewise modulated po ...
We propose the use of polyharmonic B-splines to build non-separable two-dimensional wavelet bases. The central idea is to base our design on the isotropic polyharmonic B-splines, a new type of polyharmonic B-splines that do converge to a Gaussian as the or ...
The purpose of this presentation is to describe a recent family of basis functions—the fractional B-splines—which appear to be intimately connected to fractional calculus. Among other properties, we show that they are the convolution kernels that link the ...
In this report we first review important publications in the field of face recognition; geometric features, templates, Principal Component Analysis (PCA), pseudo-2D Hidden Markov Models, Elastic Graph Matching, as well as other points are covered; importan ...
Musical and audio signals in general form a major part of the large amount of data exchange taking place in our information-based society. Transmission of high quality audio signals through narrow-band channels, such as the Internet, requires refined metho ...