Recirculation within a fluid sphere at moderate Reynolds numbers
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The talk reviews some of the analytical results available for studying the dambreak problem. Emphasis is then given to a thorough comparison between experimental data, analytical results (lubrication theory), and numerical simulations (obtained using the s ...
The Monge problem [23], [27], as reformulated by Kantorovich [19], [20] is that of the transportation, at a minimum "cost", of a given mass distribu- tion from an initial to a final position during a given time interval. It is an optimal transport problem ...
Einstein's stochastic description of the random movement of small objects in a fluid, i.e. Brownian motion, reveals to be quite different, when observed on short timescales. The limitations of Einstein's theory with respect to particle inertia and hydrodyn ...
We experimentally investigated the spreading of fluid avalanches (i.e., fixed volumes of fluid) down an inclined flume. Emphasis was given to the velocity field within the head. Using specific imaging techniques, we were able to measure velocity profiles w ...
The Weyssenhoff fluid is a perfect fluid with spin where the spin of the matter fields is the source of torsion in an Einstein–Cartan framework. Obukhov and Korotky showed that this fluid can be described as an effective fluid with spin in general relativi ...
The velocity of a liquid slug falling in a capillary tube is lower than predicted for Poiseuille flow due to presence of menisci, whose shapes are determined by the complex interplay of capillary, viscous, and gravitational forces. Due to the presence of m ...
This thesis describes measurements of Brownian motion of a colloidal particle using optical trapping. Two aspects are investigated: (i) influence of inertial effects on Brownian motion, and (ii) effect of the optical trap on Brownian motion. The first part ...
Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro-and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in ...
The understanding of the exact boundary conditions at the interface between a solid and a fluid is becoming increasingly important, as the limitations of the no-slip boundary condition are becoming apparent, especially in micro- and nanofluidics applicatio ...
We have investigated the motion of a single optically trapped colloidal particle close to a limiting wall at time scales where the inertia of the surrounding fluid plays a significant role. The velocity autocorrelation function exhibits a complex interplay ...