F SharpF# est un langage de programmation fonctionnel, impératif et orienté objet pour la plate-forme .NET. F# est développé par Microsoft Research et son noyau est dérivé du langage OCaml, avec lequel il est fortement compatible. Ces deux langages de programmation font partie de la même famille que les langages ML. Ce langage a été conçu spécifiquement pour la plate-forme .NET, donc fortement orienté-objet. Depuis novembre 2010, Microsoft a mis à la disposition de tous les bibliothèques core et son compilateur F#, sous la licence Apache 2.
Inférence (logique)L’inférence est un mouvement de la pensée qui permet de passer d'une ou plusieurs assertions, des énoncés ou propositions affirmés comme vrais, appelés prémisses, à une nouvelle assertion qui en est la conclusion. Étymologiquement, le mot inférence signifie « reporter ». En théorie, l'inférence est traditionnellement divisée en déduction et induction, une distinction qui, en Europe, remonte au moins à Aristote ( avant Jésus-Christ). On distingue les inférences immédiates des inférences médiates telles que déductives, inductives et abductives.
Réécriture (informatique)En informatique théorique, la réécriture (ou récriture) est un modèle de calcul dans lequel il s’agit de transformer des objets syntaxiques (mots, termes, lambda-termes, programmes, preuves, graphes, etc.) en appliquant des règles bien précises. La réécriture est utilisée en informatique, en algèbre, en logique mathématique et en linguistique. La réécriture est utilisée en pratique pour la gestion des courriers électroniques (dans le logiciel sendmail, les entêtes de courrier sont manipulées par des systèmes de réécriture) ou la génération et l'optimisation de code dans les compilateurs.
Abstract rewriting systemIn mathematical logic and theoretical computer science, an abstract rewriting system (also (abstract) reduction system or abstract rewrite system; abbreviated ARS) is a formalism that captures the quintessential notion and properties of rewriting systems. In its simplest form, an ARS is simply a set (of "objects") together with a binary relation, traditionally denoted with ; this definition can be further refined if we index (label) subsets of the binary relation.