Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...
A method for optimizing at least one of a geometry, an implantation procedure, and/or stimulation protocol of one or more electrodes for an electrical stimulation of a target structure in a nervous system of a living being by a computer device, the method ...
Orthogonal group synchronization is the problem of estimating n elements Z(1),& mldr;,Z(n) from the rxr orthogonal group given some relative measurements R-ij approximate to Z(i)Z(j)(-1). The least-squares formulation is nonconvex. To avoid its local minim ...
In various robotics applications, the selection of function approximation methods greatly influences the feasibility and computational efficiency of algorithms. Tensor Networks (TNs), also referred to as tensor decomposition techniques, present a versatile ...
In this paper, we present a new parameterization and optimization procedure for minimizing the weight of ribbed plates. The primary goal is to reduce embodied CO2 in concrete floors as part of the effort to diminish the carbon footprint of the construction ...
This paper develops a fast algorithm for computing the equilibrium assignment with the perturbed utility route choice (PURC) model. Without compromise, this allows the significant advantages of the PURC model to be used in large-scale applications. We form ...
Activity-based models offer the potential for a far deeper understanding of daily mobility behaviour than trip-based models. Based on the fundamental assumption that travel demand is derived from the need to do activities, they are flexible tools that aim ...
Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...