The digital transformation of pharmaceutical industry is a challenging task due to the high complexity of involved elements and the strict regulatory compliance. Maintenance activities in the pharmaceutical industry play an essential role in ensuring product quality and integral functioning of equipment and premises. This paper first identifies the key challenges of digitalization in pharmaceutical industry and creates the corresponding problem space for key involved elements. A semantic-driven digitalization framework is proposed aiming to improve the digital continuity of digital resources and technologies for maintenance activities. This framework aligns with Quality 4.0 principles and supports the industry's pursuit of zero manufacturing defects. A case study is conducted to verify the feasibility of the proposed framework based on the water sampling activities in Merck Serono facility in Switzerland. A tool-chain is presented to enable the functional modules of the framework. Some of the key functional modules within the framework are implemented and have demonstrated satisfactory performance. As one of the outcomes, a digital sampling assistant with web-based services is created to support the automated workflow of water sampling activities. The implementation result proves the potential of the proposed framework to solve the identified problems of maintenance digitalization in the pharmaceutical industry.