Robotique en essaimLa robotique en essaim est une branche de la robotique appliquant les méthodes d'intelligence distribuée aux systèmes à plusieurs robots. Il s'agit généralement d'utiliser des robots simples, voire simplistes, et peu coûteux, d'un intérêt individuel assez limité, mais qui ensemble (par exemple via des capacités d'autoassemblage ou d'auto-organisation) forment un système complexe et robuste. La robotique en essaim cherche à étudier la conception et le comportement des robots.
Système multi-agentsEn informatique, un système multi-agent (SMA) est un système composé d'un ensemble d'agents (un processus, un robot, un être humain, une fourmi etc.), actifs dans un certain environnement et interagissant selon certaines règles. Un agent est une entité caractérisée par le fait qu'elle est, au moins partiellement, autonome, ce qui exclut un pilotage centralisé du système global.
Ant roboticsAnt robotics is a special case of swarm robotics. Swarm robots are simple (and hopefully, therefore cheap) robots with limited sensing and computational capabilities. This makes it feasible to deploy teams of swarm robots and take advantage of the resulting fault tolerance and parallelism. Swarm robots cannot use conventional planning methods due to their limited sensing and computational capabilities. Thus, their behavior is often driven by local interactions.
Locomotion robotiqueLa locomotion robotique est le nom collectif des différentes méthodes que les robots utilisent pour se déplacer d'un endroit à l'autre. Les robots à roues sont généralement assez efficaces sur le plan énergétique et simples à contrôler. Toutefois, d'autres formes de locomotion peuvent être plus appropriées pour un certain nombre de raisons, par exemple pour traverser un terrain accidenté, ainsi que pour se déplacer et interagir dans des environnements humains.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Swarm behaviourSwarm behaviour, or swarming, is a collective behaviour exhibited by entities, particularly animals, of similar size which aggregate together, perhaps milling about the same spot or perhaps moving en masse or migrating in some direction. It is a highly interdisciplinary topic. As a term, swarming is applied particularly to insects, but can also be applied to any other entity or animal that exhibits swarm behaviour.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
CommunicationLa communication est l'ensemble des interactions avec un tiers humain ou animal qui véhiculent une ou plusieurs informations. En dehors de la communication animale, on distingue chez l'être humain, la communication interpersonnelle, la communication de groupe et la communication de masse, c'est-à-dire de l'ensemble des moyens et techniques permettant la diffusion du message d'une organisation sociale auprès d'une large audience. Plusieurs disciplines emploient la notion de communication sans s'accorder sur une définition commune.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.