Chemical functionalization of graphene is achieved by hyperthermal reaction with azopyridine molecular ions. The one-step, room temperature process takes place in high vacuum (10(7) mbar) using an electrospray ion beam deposition (ES-IBD) setup. For ion surface collisions exceeding a threshold kinetic energy of 165 eV, molecular cation beams of 4,4'-azobis(pyridine) covalently attach to chemical vapor deposited (CVD) graphene. A covalent functionalization degree of 3% of the carbon atoms of graphene is reached after 35 h of ion exposure of 2 X 10(14) azopyridinium/cm(2) of which 50% bind covalently. This facile approach for the controlled modification of graphene extends the scope of candidate species that would not otherwise react via existing conventional methods.
Johann Michler, Ivo Utke, Xavier Maeder