The rotational diffusion of cytochrome b5 in lipid bilayer membranes. Influence of the lipid physical state
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Gaining structural information on membrane proteins in their native lipid environment is a long-standing challenge in molecular biology. Instead, it is common to employ membrane mimetics, which has been shown to affect protein structure, dynamics, and func ...
The xanthophyll cycle is a regulatory mechanism operating in the photosynthetic apparatus of plants. It consists of the conversion of the xanthophyll pigment violaxanthin to zeaxanthin, and vice versa, in response to light intensity. According to the curre ...
Hydrated lipid bilayer membranes and their asymmetry play a fundamental role in living cells by maintaining and regulating concentration gradients between cells, their environment, and their compartments. They achieve this not only through various channels ...
Giant unilamellar lipid vesicles (GUVs) are widely used as model membrane systems and provide an excellent basis to construct artificial cells. To construct more sophisticated artificial cells, proteins-in particular membrane proteins-need to be incorporat ...
Protein-mimetic materials are of great interest for biotechnology to grant protein-like properties to artificial systems. Additionally, these materials can be used to shed light on the fundamental properties of proteins in many environments. Nanoparticles, ...
The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dyn ...
Membrane proteins are vital to life and major therapeutic targets. Yet, understanding how they function is limited by a lack of structural information. In biological cells, membrane proteins reside in lipidic membranes and typically experience different bu ...
The interaction of oils and lipids is relevant for membrane biochemistry since the cell uses bilayer membranes, lipid droplets, and oily substances in its metabolic cycle. In addition, a variety of model lipid membrane systems, such as freestanding horizon ...
Nanodiscs offer a very promising tool to incorporate membrane proteins into native-like lipid bilayers and an alternative to liposomes to maintain protein functions and protein-lipid interactions in a soluble nanoscale object. The activity of the incorpora ...
Sorting, transport, and autophagic degradation of proteins in endosomes and lysosomes, as well as the division of these organelles, depend on scission of membrane-bound tubulo-vesicular carriers. How scission occurs is poorly understood, but family protein ...