Three-dimensional topological semimetals have emerged as strong candidates to probe new fundamental physical phenomena that could be exploited to develop next generation electronics. However, many aspects of their electronic properties remain unclear. Thi ...
Sustainable development has emerged as a paramount consideration in various fields of industry, including construction, to preserve the environment and its finite resources. Lightweight structures, such as fiber-polymer composite structures, address both s ...
Pseudo-ductile behavior in composite structural frames can be achieved by enabling their beam-column joints to exhibit nonlinear structural response due to progressive damage, by using pseudo-ductile adhesives. This study investigates the static behavior o ...
Kirigami, the ancient technique of paper cutting, has been successfully applied to enhance the stretchability and ductility of nanoscale graphene. However, existing experimentally realized graphene kirigami (GK) are created by introducing parallel cuts, ex ...
Fatigue damage in materials results in localized strain at the microstructural level. In many engineering components of the cooling circuits of nuclear power plants, where austenitic steels are used, the material experiences multiaxial cyclic loading, eith ...
In this thesis, we study the mechanics of tight physical knots. Knots are omnipresent in surgery, climbing, and sailing, with disastrous consequences when the filament or the rope fails to perform its function. Even if the importance of mechanical analysis ...
The complex mechanics of porous and granular media play a significant role in various industrial processes and natural phenomena. As an example, understanding the mechanics of how failure occurs, localizes and propagates in porous brittle solids under vari ...
Laser powder bed fusion (LPBF) is a powder-based additive manufacturing (AM) technique, which shows great potential in the production of complex-shaped parts with unprecedented design freedom. In addition, it allows for an active manipulation of the micros ...
Metal plasticity is an inherently multiscale phenomenon due to the complex long-range field of atomistic dislocations that are the primary mechanism for plastic deformation in metals. Atomistic/Continuum (A/C) coupling methods are computationally efficient ...
Titanium has become in recent years an interesting material in many applications that require a combination of high mechanical properties and low density. It has the peculiarity of undergoing an allotropic transformation at 882°C. Below this temperature, ...