Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Machine à vecteurs de supportLes machines à vecteurs de support ou séparateurs à vaste marge (en anglais support-vector machine, SVM) sont un ensemble de techniques d'apprentissage supervisé destinées à résoudre des problèmes de discrimination et de régression. Les SVM sont une généralisation des classifieurs linéaires. Les séparateurs à vaste marge ont été développés dans les années 1990 à partir des considérations théoriques de Vladimir Vapnik sur le développement d'une théorie statistique de l'apprentissage : la théorie de Vapnik-Tchervonenkis.
WebAuthnWebAuthn (Web Authentication) est un standard du World Wide Web Consortium (W3C) avec la contribution de la FIDO Alliance qui propose une interface d'authentification des utilisateurs aux applications Web à l'aide de clés asymétriques. Cette interface est une extension de l'API plus générale « Credential Management » qui définit comment les navigateurs Web ou autres agents utilisateur doivent interagir avec un gestionnaire de mots de passe.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Modèle graphiqueUn modèle graphique est une représentation d'objets probabilistes. C'est un graphe qui représente les dépendances de variables aléatoires. Ces modèles sont notamment utilisés en apprentissage automatique. Un modèle graphique est un graphe orienté ou non orienté, c'est-à-dire un ensemble, les « sommets », et des liens entre les sommets, les « arêtes ». Chaque sommet représente une variable aléatoire et chaque arête représente une dépendance de ces variables. Dans l'exemple ci-contre, il y a 4 variables aléatoires A, B, C et D.
In-memory databaseAn in-memory database (IMDB, or main memory database system (MMDB) or memory resident database) is a database management system that primarily relies on main memory for computer data storage. It is contrasted with database management systems that employ a disk storage mechanism. In-memory databases are faster than disk-optimized databases because disk access is slower than memory access and the internal optimization algorithms are simpler and execute fewer CPU instructions.
Base de données relationnellethumb|upright=1.2|Structure générale d'une base de données relationnelle. En informatique, une base de données relationnelle (en anglais: relational database management system (RDBMS)) est une base de données où l'information est organisée dans des tableaux à deux dimensions appelés des relations ou tables, selon le modèle introduit par Edgar F. Codd en 1960. Selon ce modèle relationnel, une base de données consiste en une ou plusieurs relations. Les lignes de ces relations sont appelées des nuplets ou enregistrements.
Video codecA video codec is software or hardware that compresses and decompresses digital video. In the context of video compression, codec is a portmanteau of encoder and decoder, while a device that only compresses is typically called an encoder, and one that only decompresses is a decoder. The compressed data format usually conforms to a standard video coding format. The compression is typically lossy, meaning that the compressed video lacks some information present in the original video.
Speech codingSpeech coding is an application of data compression to digital audio signals containing speech. Speech coding uses speech-specific parameter estimation using audio signal processing techniques to model the speech signal, combined with generic data compression algorithms to represent the resulting modeled parameters in a compact bitstream. Common applications of speech coding are mobile telephony and voice over IP (VoIP).
Database modelA database model is a type of data model that determines the logical structure of a database. It fundamentally determines in which manner data can be stored, organized and manipulated. The most popular example of a database model is the relational model, which uses a table-based format. Common logical data models for databases include: Hierarchical database model This is the oldest form of database model. It was developed by IBM for IMS (information Management System), and is a set of organized data in tree structure.