Mixture Models for Unsupervised and Supervised Learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we propose and compare personalized models for Productive Engagement (PE) recognition. PE is defined as the level of engagement that maximizes learning. Previously, in the context of robot-mediated collaborative learning, a framework of prod ...
We present a discriminative clustering approach in which the feature representation can be learned from data and moreover leverage labeled data. Representation learning can give a similarity-based clustering method the ability to automatically adapt to an ...
This thesis addresses theoretical and practical aspects of identification and subsequent control of self-exciting point processes. The main contributions correspond to four separate scientific papers.In the first paper, we address the challenge of robust i ...
Advances in soft sensors coupled with machine learning are enabling increasingly capable wearable systems. Since hand motion in particular can convey useful information for developing intuitive interfaces, glove-based systems can have a significant impact ...
Institute of Electrical and Electronics Engineers Inc.2022
Over the last two decades, data-powered machine learning (ML) tools have profoundly transformed numerous scientific fields. In computational chemistry, machine learning applications have permitted faster predictions of chemical properties and provided powe ...
Advances in scanning systems have enabled the digitization of pathology slides into Whole-Slide Images (WSIs), opening up opportunities to develop Computational Pathology (CompPath) methods for computer-aided cancer diagnosis and prognosis. CompPath has be ...
Covariance estimation is ubiquitous in functional data analysis. Yet, the case of functional observations over multidimensional domains introduces computational and statistical challenges, rendering the standard methods effectively inapplicable. To address ...
The performance of myoelectric control highly depends on the features extracted from surface electromyographic (sEMG) signals. We propose three new sEMG features based on the kernel density estimation. The trimmed mean of density (TMD), the entropy of dens ...
Rationale: Given the expanding number of COVID-19 cases and the potential for new waves of infection, there is an urgent need for early prediction of the severity of the disease in intensive care unit (ICU) patients to optimize treatment strategies.Objecti ...
Supervised and unsupervised kernel-based algorithms widely used in the physical sciences depend upon the notion of similarity. Their reliance on pre-defined distance metrics-e.g. the Euclidean or Manhattan distance-are problematic especially when used in c ...