Publication

Probabilistic Home Video Structuring: Feature Selection and Performance Evaluation

Daniel Gatica-Perez
2002
Rapport ou document de travail
Résumé

We recently proposed a method to find cluster structure in home videos based on statistical models of visual and temporal features of video segments and sequential binary Bayesian classification. In this paper, we present analysis and improved results on two key issues: feature selection and performance evaluation, using a ten-hour database (30 video clips, 1,075,000 frames). From multiple features and similarity measures, visual features are selected in order to minimize the empirical probability of misclassification. Temporal features are chosen to reflect the patterns existing in both shot and cluster duration and adjacency. Finally, we describe a detailed performance evaluation procedure that includes cluster detection, individual shot-cluster labeling, and prior selection.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.