Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Recently, a nonlinear transformation of autocorrelation coefficients named Phase AutoCorrelation (PAC) coefficients has been considered for feature extraction \cite{ikbal03}. PAC based features show improved robustness to additive noise as a result of two ...
State-of-the-art automatic speech recognition (ASR) techniques are typically based on hidden Markov models (HMMs) for the modeling of temporal sequences of feature vectors extracted from the speech signal. At the level of each HMM state, Gaussian mixture m ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
École Polytechnique Fédérale de Lausanne, Computer Science Department2003
This paper presents the theoretical basis and preliminary experimental results of a new HMM model, referred to as HMM2, which can be considered as a mixture of HMMs. In this new model, the emission probabilities of the temporal (primary) HMM are estimated ...
In current automatic speech recognition (ASR) systems, the energy is not used as part of the feature vector in spite of being a fundamental feature in the speech signal. The noise inherent in its estimation degrades the system performance. In this report w ...
Recently, a nonlinear transformation of autocorrelation coefficients named Phase AutoCorrelation (PAC) coefficients has been considered for feature extraction \cite{ikbal03}. PAC based features show improved robustness to additive noise as a result of two ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
This thesis presents a PhD work on offline cursive handwriting recognition, the automatic transcription of cursive data when only its image is available. Two main approaches were used in the literature to solve the problem. The first one attempts to segmen ...
In this paper, we present a new approach towards high performance speech/music discrimination on realistic tasks related to the automatic transcription of broadcast news. In the approach presented here, the (local) Probability Density Function (PDF) estima ...