Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Modèle de donnéesEn informatique, un modèle de données est un modèle qui décrit la manière dont sont représentées les données dans une organisation métier, un système d'information ou une base de données. Le terme modèle de données peut avoir deux significations : Un modèle de données théorique, c'est-à-dire une description formelle ou un modèle mathématique. Voir aussi modèle de base de données Un modèle de données instance, c'est-à-dire qui applique un modèle de données théorique (modélisation des données) pour créer un modèle de données instance.
Contrôle du bruitalt=|vignette| Sonomètre Le contrôle du bruit, sa gestion ou atténuation, sont les efforts déployés, en tout domaine, pour diminuer la pollution sonore et limiter l'impact du bruit, tant à l'extérieur qu'à l'intérieur des bâtiments et autres structures habitées. Parmi les principaux domaines concernés par le contrôle, d'atténuation ou de réduction du bruit figurent : le contrôle du bruit des transports (trafic routier, ferroviaire, aérien, des navires dans les ports, etc), la conception architecturale et l'urbanisme (via notamment des codes de zonage) ou encore le contrôle du bruit au travail.
Bruit numériqueDans une , on appelle bruit numérique toute fluctuation parasite ou dégradation que subit l'image de l'instant de son acquisition jusqu'à son enregistrement. Le bruit numérique est une notion générale à tout type d'image numérique, et ce quel que soit le type du capteur à l'origine de son acquisition (appareil photo numérique, scanner, caméra thermique...etc). Les sources de bruit numérique sont multiples, certaines sont physiques liées à la qualité de l’éclairage, de la scène, la température du capteur, la stabilité du capteur de l'image durant l'acquisition, d'autres apparaissent durant la numérisation de l'information.
Bruit thermiqueLe bruit thermique, également nommé bruit de résistance, bruit Johnson ou bruit de Johnson-Nyquist, est le bruit généré par l'agitation thermique des porteurs de charges, c'est-à-dire des électrons dans une résistance électrique en équilibre thermique. Ce phénomène a lieu indépendamment de toute tension appliquée. Le bruit thermique aux bornes d'une résistance est exprimée par la relation de Nyquist : où est la variance de la tension aux bornes de la résistance, est la constante de Boltzmann, qui vaut kB = 1,3806 × 10-23 J.
Classification en classes multiplesIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.
Pollution sonorethumb|Selon G. Dutilleux (2012), (ici, à titre d'exemple : vue de la circulation automobile urbaine à Bangkok, source majeure de nuisances sonores. thumb|L'échangeur de Daussoulx en Belgique ; autre exemple de source de nuisances sonores. La notion de pollution sonore regroupe généralement des nuisances sonores, et des pollutions induites par le son devenu dans certaines circonstances un « altéragène physique » pour l'être humain ou les écosystèmes.
Data wranglingData wrangling, sometimes referred to as data munging, is the process of transforming and mapping data from one "raw" data form into another format with the intent of making it more appropriate and valuable for a variety of downstream purposes such as analytics. The goal of data wrangling is to assure quality and useful data. Data analysts typically spend the majority of their time in the process of data wrangling compared to the actual analysis of the data.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».