Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.
Time delay neural networkTime delay neural network (TDNN) is a multilayer artificial neural network architecture whose purpose is to 1) classify patterns with shift-invariance, and 2) model context at each layer of the network. Shift-invariant classification means that the classifier does not require explicit segmentation prior to classification. For the classification of a temporal pattern (such as speech), the TDNN thus avoids having to determine the beginning and end points of sounds before classifying them.
Le Monde de NemoLe Monde de Nemo ou Trouver Nemo au Québec (Finding Nemo) est le cinquième film d'animation en des studios Pixar. Il est produit par Walt Disney Pictures, réalisé par Andrew Stanton et Lee Unkrich et sorti en 2003. vignette|Costume de Nemo. Après la mort de sa compagne Corail et du reste de la couvée à la suite de l'attaque d'un barracuda, le poisson-clown Marin doit prendre soin de son fils unique, Nemo, handicapé par une nageoire atrophiée. Lors de son premier jour d'école, Marin, inquiet, décide de le suivre à l'occasion d'une sortie scolaire.
Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Applications de l'intelligence artificielleL'intelligence artificielle, définie comme intelligence présentée par les machines, a de nombreuses applications dans la société actuelle. Plus précisément, c'est l'IA faible, la forme d'IA avec laquelle les programmes sont développés pour effectuer des tâches spécifiques, qui est utilisée pour un large éventail d'activités, y compris le diagnostic médical, le commerce électronique, le contrôle des robots et la télédétection. L'IA a été utilisée pour développer et faire progresser de nombreux domaines et industries, y compris la finance, la santé, l'éducation, le transport, et plus encore.
ConnexionnismeLe connexionnisme est une approche utilisée en sciences cognitives, neurosciences, psychologie et philosophie de l'esprit. Le connexionnisme modélise les phénomènes mentaux ou comportementaux comme des processus émergents de réseaux d'unités simples interconnectées. Le plus souvent les connexionnistes modélisent ces phénomènes à l'aide de réseaux de neurones. Il s'agit d'une théorie qui a émergé à la fin des années 1980 en tant qu'alternative au computationnalisme (Putnam, Fodor) alors dominant.
Système expertUn système expert est un outil capable de reproduire les mécanismes cognitifs d'un expert, dans un domaine particulier. Il s'agit de l'une des voies tentant d'aboutir à l'intelligence artificielle. Plus précisément, un système expert est un logiciel capable de répondre à des questions, en effectuant un raisonnement à partir de faits et de règles connues. Il peut servir notamment comme outil d'aide à la décision. Le premier système expert a été Dendral. Il permettait d'identifier les constituants chimiques.
Processeur vectorielvignette|Processeur vectoriel d'un supercalculateur Cray-1. Un processeur vectoriel est un processeur possédant diverses fonctionnalités architecturales lui permettant d'améliorer l’exécution de programmes utilisant massivement des tableaux, des matrices, et qui permet de profiter du parallélisme inhérent à l'usage de ces derniers. Développé pour des applications scientifiques et exploité par les machines Cray et les supercalculateurs qui lui feront suite, ce type d'architecture a rapidement montré ses avantages pour des applications grand public (on peut citer la manipulation d'images).
Best, worst and average caseIn computer science, best, worst, and average cases of a given algorithm express what the resource usage is at least, at most and on average, respectively. Usually the resource being considered is running time, i.e. time complexity, but could also be memory or some other resource. Best case is the function which performs the minimum number of steps on input data of n elements. Worst case is the function which performs the maximum number of steps on input data of size n.
Précision et rappelvignette|350px|Précision et rappel (« recall »). La précision compte la proportion d'items pertinents parmi les items sélectionnés alors que le rappel compte la proportion d'items pertinents sélectionnés parmi tous les items pertinents sélectionnables. Dans les domaines de la reconnaissance de formes, de la recherche d'information et de la classification automatique, la précision (ou valeur prédictive positive) est la proportion des items pertinents parmi l'ensemble des items proposés ; le rappel (ou sensibilité) est la proportion des items pertinents proposés parmi l'ensemble des items pertinents.