Publication

Robust Playfield Segmentation using MAP Adaptation

Jean-Marc Odobez, Mark Barnard
2004
Article de conférence
Résumé

A vital task in sports video annotation is to detect and segment areas of the playfield. This is an important first step in player or ball tracking and detecting the location of the play on the playfield. In this paper we present a technique using statistical models, Gaussian mixture models (GMMs) and Maximum a Posteriori (MAP) adaptation. This involves first creating a generic model of the playfield colour and then using unsupervised MAP adaptation to adapt this model to the colour of the playfield in each game. This technique provides a robust and accurate segmentation of the playfield. To demonstrate the robustness of the method we tested it on a number of different sports that have grass playfields, rugby, soccer and field hockey.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.