Passeport biométriquevignette|Symbole distinguant les passeports biométriques. Un passeport biométrique est un passeport doté d'une puce électronique qui contient des informations biométriques pouvant être utilisées pour authentifier l'identité du détenteur du passeport. Il utilise une technologie de carte à puce sans contact, une puce de microprocesseur et une antenne intégrées dans la couverture avant ou arrière, ou page centrale du passeport. Les informations critiques du passeport sont à la fois imprimées sur la page de données du passeport et stockées dans la puce électronique.
Multi-factor authenticationMulti-factor authentication (MFA; two-factor authentication, or 2FA, along with similar terms) is an electronic authentication method in which a user is granted access to a website or application only after successfully presenting two or more pieces of evidence (or factors) to an authentication mechanism. MFA protects personal data—which may include personal identification or financial assets—from being accessed by an unauthorized third party that may have been able to discover, for example, a single password.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Dynamique de frappe au clavierLa dynamique de frappe ou biométrie de frappe désigne les informations détaillées qui décrivent exactement quand chaque touche a été pressé et quand elle a été relâchée lorsqu'une personne tape sur un clavier d'ordinateur. La biométrie comportementale de Keystroke Dynamics utilise la manière et le rythme dans lesquels un individu tape des caractères sur un clavier ou un pavé numérique. Les rythmes de frappe d'un utilisateur sont mesurés pour développer un modèle biométrique unique du modèle de frappe de l'utilisateur pour une authentification future.
Mutual authenticationMutual authentication or two-way authentication (not to be confused with two-factor authentication) refers to two parties authenticating each other at the same time in an authentication protocol. It is a default mode of authentication in some protocols (IKE, SSH) and optional in others (TLS). Mutual authentication is a desired characteristic in verification schemes that transmit sensitive data, in order to ensure data security. Mutual authentication can be accomplished with two types of credentials: usernames and passwords, and public key certificates.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Client lourdthumb|Modèle client-serveur. Un client lourd est un logiciel qui propose des fonctionnalités complexes avec un traitement autonome. La notion de client s'entend dans une architecture client-serveur. Et contrairement au client léger, le client lourd ne dépend du serveur que pour l'échange des données dont il prend généralement en charge l'intégralité du traitement. Le client lourd reste utilisable localement même en cas de panne réseau, d'indisponibilité ou saturation du serveur.
Gestion des connaissancesLa gestion des connaissances (en anglais knowledge management) est une démarche managériale pluridisciplinaire qui regroupe l'ensemble des initiatives, des méthodes et des techniques permettant de percevoir, identifier, analyser, organiser, mémoriser, partager les connaissances des membres d'une organisation – les savoirs créés par l'entreprise elle-même (marketing, recherche et développement) ou acquis de l'extérieur (intelligence économique) – en vue d'atteindre un objectif fixé. Nous sommes submergés d'informations.
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.