Sequence Classification with Input-Output Hidden Markov Models
Publications associées (32)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In a previous paper on speech recognition, we showed that templates can better capture the dynamics of speech signal compared to parametric models such as hidden Markov models. The key point in template matching approaches is finding the most similar templ ...
Brain-computer interfaces, as any other interaction modality based on physiological signals and body channels (e.g., muscular activity, speech and gestures), are prone to errors in the recognition of subject's intent. In this paper we exploit a unique feat ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
École Polytechnique Fédérale de Lausanne, Computer Science Department2003
Automatic speech recognition (ASR) is a very challenging problem due to the wide variety of the data that it must be able to deal with. Being the standard tool for ASR, hidden Markov models (HMMs) have proven to work well for ASR when there are controls ov ...
Electroencephalogram recordings during imagination of mental tasks allow for developing a new communication device for, e.g., motor disabled people. 32-channel EEG was recorded from 5 healthy subjects while performing, after instruction and in random order ...
Changes in EEG power spectra related to the imagination of movements may be used to build up a direct communication channel between the brain and computer (Brain Computer Interface; BCI). However, for the practical implementation of a BCI device, the featu ...
In this paper, we discuss a family of new Automatic Speech Recognition (ASR) approaches, which somewhat deviate from the usual ASR approaches but which have recently been shown to be more robust to nonstationary noise, without requiring specific adaptation ...
A brain-computer interface (BCI) is a communication system, that implements the principle of "think and make it happen without any physical effort". This means a BCI allows a user to act on his environment only by using his thoughts, without using peripher ...
Traditional speech recognition systems use Gaussian mixture models to obtain the likelihoods of individual phonemes, which are then used as state emission probabilities in hidden Markov models representing the words. In hybrid systems, the Gaussian mixture ...