Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this thesis, we explore the use of machine learning techniques for information retrieval. More specifically, we focus on ad-hoc retrieval, which is concerned with searching large corpora to identify the documents relevant to user queries. This identific ...
In this thesis, we explore the use of machine learning techniques for information retrieval. More specifically, we focus on ad-hoc retrieval, which is concerned with searching large corpora to identify the documents relevant to user queries. This identific ...
Tasks that rely on semantic content of documents, notably Information Retrieval and Document Classification, can benefit from a good account of document context, i.e. the semantic association between documents. To this effect, the scheme of latent semantic ...
Retrieving information from archived meetings is a new domain of information retrieval that has received increasing attention in the past few years. Search in spontaneous spoken conversations has been recognized as more difficult than text-based document r ...
This paper explores a crowdsourcing approach to the evaluation of a document recommender system intended for use in meetings. The system uses words from the conversation to perform just-in-time document retrieval. We compare several versions of the system, ...
The Probalistic Latent Semantic Indexing model, introduced by T. Hofmann (1999), has engendered applications in numerous fields, notably document classification and information retrieval. In this context, the Fisher kernel was found to be an appropriate do ...
The PLSI model (“Probabilistic Latent Semantic Indexing”) offers a document indexing scheme based on probabilistic latent category models. It entailed applications in diverse fields, notably in information retrieval (IR). Nevertheless, PLSI cannot process d ...
In this thesis, we explore the use of machine learning techniques for information retrieval. More specifically, we focus on ad-hoc retrieval, which is concerned with searching large corpora to identify the documents relevant to user queries. Thisidentifica ...
With the rapid expansion in the use of computers for producing digitalized textual documents, the need of automatic systems for organizing and retrieving the information contained in large databases has become essential. In general, information retrieval s ...
In this paper, we present a query-driven indexing/retrieval strategy for efficient full text retrieval from large document collections distributed within a structured P2P network. Our indexing strategy is based on two important properties: (1) the generate ...