Application of Information Retrieval Techniques to Single Writer Documents
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This work shows experiments on the retrieval of handwritten documents. The performance of the same state-of-the-art Information Retrieval system is compared when dealing with manual (no errors) and automatic (Word Error Rate around 50%) transcriptions of t ...
This work presents document clustering experiments performed over noisy texts (i.e. text that have been extracted through an automatic process like speech or character recognition). The effect of recognition errors on different clustering techniques is mea ...
Text embedded in images and videos represents a rich source of information for content-based indexing and retrieval applications. In this paper, we present a new method for localizing and recognizing text in complex images and videos. Text localization is ...
Spoken Document Retrieval (SDR) consists in retrieving segments of a speech database that are relevant to a query. The state-of-the-art approach to the SDR problem consists in transcribing the speech data into digital text before applying common Informatio ...
Text characters embedded in images and video sequences represents a rich source of information for content-based indexing and retrieval applications. However, these text characters are difficult to be detected and recognized due to their various sizes, gra ...
Sequence recognition performance is often summarised first in terms of the number of hits (H), substitutions (S), deletions (D) and insertions (I), and then as a single statistic by the "word error rate" WER = 100(S D I)/(H S D). While in common use, WER h ...
This work presents categorization experiments performed over noisy texts. By noisy it is meant any text obtained through an extraction process (affected by errors) from media other than digital texts (e.g. transcriptions of speech recordings extracted with ...
This work shows experiments on the retrieval of handwritten documents. The performance of the same state-of-the-art Information Retrieval system is compared when dealing with manual (no errors) and automatic (Word Error Rate around 50%) transcriptions of t ...
Text characters embedded in images and video sequences represents a rich source of information for content-based indexing and retrieval applications. However, these text characters are difficult to be detected and recognized due to their various sizes, gra ...
Text characters embedded in images and video sequences represents a rich source of information for content-based indexing and retrieval applications. However, these text characters are difficult to be detected and recognized due to their various sizes, gra ...