Audio coding formatAn audio coding format (or sometimes audio compression format) is a content representation format for storage or transmission of digital audio (such as in digital television, digital radio and in audio and video files). Examples of audio coding formats include MP3, AAC, Vorbis, FLAC, and Opus. A specific software or hardware implementation capable of audio compression and decompression to/from a specific audio coding format is called an audio codec; an example of an audio codec is LAME, which is one of several different codecs which implements encoding and decoding audio in the MP3 audio coding format in software.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Thermodynamique quantiqueLa thermodynamique quantique est l'extension de la thermodynamique aux phénomènes quantiques. Elle se distingue de la physique statistique quantique par l'accent mis sur les processus dynamiques hors d'équilibre ainsi que par son éventuelle application à un système quantique individuel. Annoncée par les travaux d'Einstein sur la quantification du rayonnement et de Planck sur le rayonnement du corps noir, la thermodynamique quantique n'a commencé à être constituée en théorie autonome qu'à la fin des années 2010 et reste incomplète en .
Compression de donnéesLa compression de données ou codage de source est l'opération informatique consistant à transformer une suite de bits A en une suite de bits B plus courte pouvant restituer les mêmes informations, ou des informations voisines, en utilisant un algorithme de décompression. C'est une opération de codage qui raccourcit la taille (de transmission, de stockage) des données au prix d'un travail de compression. Celle-ci est l'opération inverse de la décompression.
PerceptronLe perceptron est un algorithme d'apprentissage supervisé de classifieurs binaires (c'est-à-dire séparant deux classes). Il a été inventé en 1957 par Frank Rosenblatt au laboratoire d'aéronautique de l'université Cornell. Il s'agit d'un neurone formel muni d'une règle d'apprentissage qui permet de déterminer automatiquement les poids synaptiques de manière à séparer un problème d'apprentissage supervisé. Si le problème est linéairement séparable, un théorème assure que la règle du perceptron permet de trouver une séparatrice entre les deux classes.
Principe d'entropie maximaleLe principe d'entropie maximale consiste, lorsqu'on veut représenter une connaissance imparfaite d'un phénomène par une loi de probabilité, à : identifier les contraintes auxquelles cette distribution doit répondre (moyenne, etc) ; choisir de toutes les distributions répondant à ces contraintes celle ayant la plus grande entropie au sens de Shannon. De toutes ces distributions, c'est en effet celle d'entropie maximale qui contient le moins d'information, et elle est donc pour cette raison la moins arbitraire de toutes celles que l'on pourrait utiliser.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Deuxième principe de la thermodynamiqueLe deuxième principe de la thermodynamique (également connu sous le nom de deuxième loi de la thermodynamique ou principe de Carnot) établit l'irréversibilité des phénomènes physiques, en particulier lors des échanges thermiques. C'est un principe d'évolution qui fut énoncé pour la première fois par Sadi Carnot en 1824. Il a depuis fait l'objet de nombreuses généralisations et formulations successives par Clapeyron (1834), Clausius (1850), Lord Kelvin, Ludwig Boltzmann en 1873 et Max Planck (voir Histoire de la thermodynamique et de la mécanique statistique), tout au long du et au-delà jusqu'à nos jours.
Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Many-minds interpretationThe many-minds interpretation of quantum mechanics extends the many-worlds interpretation by proposing that the distinction between worlds should be made at the level of the mind of an individual observer. The concept was first introduced in 1970 by H. Dieter Zeh as a variant of the Hugh Everett interpretation in connection with quantum decoherence, and later (in 1981) explicitly called a many or multi-consciousness interpretation. The name many-minds interpretation was first used by David Albert and Barry Loewer in 1988.