We recently demonstrated an original approach to highly selective laser isotope separation of carbon-13 that employs vibrational overtone pre-excitation of CF3 H together with infrared multiphoton dissociation [O.V. Boyarkin, M. Kowalczyk, T.R. Rizzo, J. Chem. Phys. 118, 93 (2003)]. The practical implementation of this approach was complicated by the long absorption path length needed for the overtone excitation laser beam. In the present work, we employ a low overtone level for the pre-excitation that shortens this pathway, facilitating engineering of the process. We propose an optimal configuration of the isotope separation scheme and consider a realistic example of a separation unit for isotopic enrichment of carbon-13 to 94–98%. The photon energy expenditure of 97 eV per separated atom is much lower than that of the current commercial laser technology, making this process economically feasible.
Deyanira Graciela Cisneros Lazaro
Marinella Mazzanti, Rizlan Bernier-Latmani, Margaux Camille Andréa Molinas, Radmila Faizova, Ashley Richards Brown