The change-of-variance function of M-estimators of scale under general contamination
Publications associées (33)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Generalized Linear Models have become a commonly used tool of data analysis. Such models are used to fit regressions for univariate responses with normal, gamma, binomial or Poisson distribution. Maximum likelihood is generally applied as fitting method. I ...
Powerful mathematical tools have been developed for trading in stocks and bonds, but other markets that are equally important for the globalized world have to some extent been neglected. We decided to study the shipping market as an new area of development ...
In this paper we aim at controlling physically meaningful quantities with emphasis on environmental applications. This is carried out by an efficient numerical procedure combining the goal-oriented framework [R. Becker, R. Rannacher, An optimal control app ...
Time series modeling and analysis is central to most financial and econometric data modeling. With increased globalization in trade, commerce and finance, national variables like gross domestic productivity (GDP) and unemployment rate, market variables lik ...
In the context of spatial statistics, the classical variogram estimator proposed by Matheron is not robust against outliers in the data, nor is Cressie and Hawkins' estimator. Therefore, we suggest the use of a variogram estimator based on a highly robust ...
Many recent algorithms for sparse signal recovery can be interpreted as maximum-a-posteriori (MAP) estimators relying on some specific priors. From this Bayesian perspective, state-of-the-art methods based on discrete-gradient regularizers, such as total-v ...
Many recent algorithms for sparse signal recovery can be interpreted as maximum-a-posteriori (MAP) estimators relying on some specific priors. From this Bayesian perspective, state-of-the-art methods based on discrete-gradient regularizers, such as total- ...
We address the question of how to characterize the outliers that may appear when matching two views of the same scene. The match is performed by comparing the difference of the two views at a pixel level, aiming at a better registration of the images. When ...
In this paper we present an optimal estimator of magnitude spectrum for speech enhancement when the clean speech DFT coefficients are modeled by a Laplacian distribution and the noise DFT coefficients are modeled by a Gaussian distribution. Chen has alread ...
in finite sample studies redescending M-estimators outperform bounded M-estimators (see for example, Andrews et al. [1972. Robust Estimates of Location. Princeton University Press, Princeton]). Even though redescenders arise naturally out of the maximum li ...