Morphologie mathématiqueLa morphologie mathématique est une théorie et technique mathématique et informatique d'analyse de structures qui est liée avec l'algèbre, la théorie des treillis, la topologie et les probabilités. Le développement de la morphologie mathématique est inspiré des problèmes de , domaine qui constitue son principal champ d'application. Elle fournit en particulier des outils de filtrage, , quantification et modélisation d'images. Elle est également utilisable en traitement du signal, par exemple pour filtrer les variations d'une mesure (physique, biologique) au cours du temps.
Dilation (morphology)Dilation (usually represented by ⊕) is one of the basic operations in mathematical morphology. Originally developed for , it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image. In binary morphology, dilation is a shift-invariant (translation invariant) operator, equivalent to Minkowski addition. A binary image is viewed in mathematical morphology as a subset of a Euclidean space Rd or the integer grid Zd, for some dimension d.
Érosion (informatique)L'érosion est l'une des deux opérations fondamentales du traitement d'image morphologique. Soit A une image binaire, respectant les conventions usuelles suivantes : Les pixels ayant la valeur 0 sont considérés de couleur noire et représentent le fond. Les pixels ayant la valeur 1 sont considérés de couleur blanche et représentent le sujet de l'image. Soit B un élément structurant, respectant lui aussi ces conventions.
Opening (morphology)In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B: where and denote erosion and dilation, respectively. Together with closing, the opening serves in computer vision and as a basic workhorse of morphological noise removal. Opening removes small objects from the foreground (usually taken as the bright pixels) of an image, placing them in the background, while closing removes small holes in the foreground, changing small islands of background into foreground.
Closing (morphology)In mathematical morphology, the closing of a set () A by a structuring element B is the erosion of the dilation of that set, where and denote the dilation and erosion, respectively. In , closing is, together with opening, the basic workhorse of morphological noise removal. Opening removes small objects, while closing removes small holes. It is idempotent, that is, . It is increasing, that is, if , then . It is extensive, i.e., . It is translation invariant.
Image binaireParmi les , et en particulier, les , les images binaires sont les plus simples. Bichromes (la plupart du temps noire et blanche) elles sont ontologiquement numériques c'est-à-dire que leur codage et leur décodage peuvent être faits directement vers la base 2. Il existe deux images binaires pour représenter un point au centre d'une matrice de neuf éléments (il peut s'agir très simplement d'ampoules allumées ou éteintes) : 000 010 000 codage : 0, 2, 0 111 101 111 codage : 7, 5, 7 Niveau de gris Tramage (ou d
Problème du voyageur de commercevignette|Le problème de voyageur de commerce : calculer un plus court circuit qui passe une et une seule fois par toutes les villes (ici 15 villes). En informatique, le problème du voyageur de commerce, ou problème du commis voyageur, est un problème d'optimisation qui consiste à déterminer, étant donné un ensemble de villes, le plus court circuit passant par chaque ville une seule fois. C'est un problème algorithmique célèbre, qui a donné lieu à de nombreuses recherches et qui est souvent utilisé comme introduction à l'algorithmique ou à la théorie de la complexité.
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
IsométrieEn géométrie, une isométrie est une transformation, qui conserve les longueurs et les mesures d’angles, délimités par deux demi‐droites ou bien deux demi‐plans. Autrement dit, une isométrie est une similitude particulière, qui reproduit n’importe quelle figure à l’échelle 1. Ce rapport 1 de longueurs s’appelle le rapport de la similitude. Comme une similitude, une isométrie dite directe conserve l’orientation des figures, tandis qu’une isométrie indirecte inverse leur orientation.
Coût marginalLe coût marginal est le coût induit par une variation de l'activité. Pour les économistes, cette variation peut être infinitésimale, et le coût marginal est alors la dérivée de la fonction de coût. Pour les comptables, le coût marginal est défini comme la variation du coût engendrée par la production ou la vente d'une unité supplémentaire (ce qui est plus concret qu'un calcul de dérivée). Dans la réalité du monde de l'entreprise, la variation d'activité correspond généralement à une commande supplémentaire (qui peut donc porter sur un lot de plusieurs produits).