Human motion analysis and synthesis is integral to many computer vision applications, from autonomous driving to sports analysis. In this thesis, we address several problems in this domain. First we consider active viewpoint selection for pose estimation w ...
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
Single-photon avalanche diodes (SPADs) are novel image sensors that record the arrival of individual photons at extremely high temporal resolution. In the past, they were only available as single pixels or small-format arrays, for various active imaging ap ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
This study presents a self-supervised Bayesian Neural Network (BNN) framework using air-borne Acoustic Emission (AE) to identify different Laser Powder Bed Fusion (LPBF) process regimes such as Lack of Fusion, conduction mode, and keyhole without ground-tr ...
We address the problem of segmenting anomalies and unusual obstacles in road scenes for the purpose of self-driving safety.
The objects in question are not present in the common training sets as it is not feasible to collect and annotate examples for every ...
Data augmentation has proven its usefulness to improve model generalization and performance. While it is commonly applied in computer vision application when it comes to multi-view systems, it is rarely used. Indeed geometric data augmentation can break th ...
Random Fourier features (RFFs) provide a promising way for kernel learning in a spectral case. Current RFFs-based kernel learning methods usually work in a two-stage way. In the first-stage process, learn-ing an optimal feature map is often formulated as a ...
End-to-end learning methods like deep neural networks have been the driving force in the remarkable progress of machine learning in recent years. However, despite their success, the deployment process of such networks in safety-critical use cases, such as ...