On Evaluating Metrics For Video Segmentation Algorithms
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Single Domain Generalization (SDG) tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain. While this has been well studied for image classification, the literature on SDG object detection remai ...
We address the problem of segmenting anomalies and unusual obstacles in road scenes for the purpose of self-driving safety.The objects in question are not present in the common training sets as it is not feasible to collect and annotate examples for every ...
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
Modern machine learning methods and their applications in computer vision are known to crave for large amounts of training data to reach their full potential. Because training data is mostly obtained through humans who manually label samples, it induces a ...
Semantic segmentation datasets often exhibit two types of imbalance: \textit{class imbalance}, where some classes appear more frequently than others and \textit{size imbalance}, where some objects occupy more pixels than others. This causes traditional eva ...
We propose an active learning approach to image segmentation that exploits geometric priors to speed up and streamline the annotation process. It can be applied for both background foreground and multi-class segmentation tasks in 2D images and 3D image vol ...
Size uniformity is one of the prominent features of superpixels. However, size uniformity rarely conforms to the varying content of an image. The chosen size of the superpixels therefore represents a compromise - how to obtain the fewest superpixels withou ...
Object recognition is one of the most important problems in computer vision. However, visual recognition poses many challenges when tried to be reproduced by artificial systems. A main challenge is the problem of variability: objects can appear across huge ...
Object recognition is one of the most important problems in computer vision. However, visual recognition poses many challenges when tried to be reproduced by artificial systems. A main challenge is the problem of variability: objects can appear across huge ...
Background: Automated segmentation of brain structures is an important task in structural and functional image analysis. We developed a fast and accurate method for the striatum segmentation using deep convolutional neural networks (CNN). New method: T1 ma ...