Ease of fabrication and design flexibility are two attractive features of low temperature co-fired ceramics (LTCC) technology for fabrication of complex micro-fluidic devices. Such structures are designed and processed using different shaping methods, the extent and complexity of which depends on the final device specifications (dimensions, mechanical and functional properties). In this work, we propose a sacrificial layer method based on carbon-black paste, which burns out during the LTCC firing stage. The paper will summarize the preparation of the paste, influence of processing conditions on the final dimensions, and demonstrate the mechanically integrated structures obtained using this technique. Some of those are membranes of various diameters (7-12mm) with a thickness of 40µm and a variety of internal spacing (15-60µm), free-hanging thick-film resistors (TFR) bridges on LTCC for heating micro-volumes. The main methods of the study will be thermo gravimetric analysis (TGA), scanning electron microscopy (SEM) and dilatometry in addition to electronic instruments for device characterization.
Duncan Thomas Lindsay Alexander, Chih-Ying Hsu, Bernat Mundet, Jean-Marc Triscone
Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Fabian Fischer, Hanxuan Wang, Charlotte Elisabeth Marie Roullier, Patricia Brandl