Piezoelectric response and polarization switching in small anisotropic perovskite particles
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Longitudinal piezoelectric coefficient of a twinned ferroelectric perovskite material with an array of partially compensated head-to-head and tail-to-tail 90-degree domain walls has been studied by phase-field simulations in the framework of the Ginzburg-L ...
"More with less" has been the motto behind the hardware miniaturization trend in the microelectronics industry since the 1970s. Active research in the growth of oxide films, including ferroelectrics, which started soon after, followed the same trend. Meanw ...
The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a ...
The manner in which 90. ferroelectric-ferroelastic domains respond to changes in temperature has been mapped in BaTiO3 single crystals using atomic force microscopy. Domain periodicity remains unaltered until approximately 2 degrees C below the Curie tempe ...
This thesis consists of a theoretical analysis of charged domain walls in ferroelectrics based on Landau theory and the theory of semiconductors. First, the internal structure of a 180-degree charged domain wall is considered. It is shown that different re ...
The contribution of non-180 degrees domain wall displacement to the frequency dependence of the longitudinal piezoelectric coefficient has been determined experimentally in lead zirconate titanate using time-resolved, in situ neutron diffraction. Under sub ...
In contrast to the flexible rotation of magnetization direction in ferromagnets, the spontaneous polarization in ferroelectric materials is highly confined along the symmetry-allowed directions. Accordingly, chirality at ferroelectric domain walls was trea ...
Donor doping is commonly applied for softening of the piezoelectric and dielectric properties and facilitation of polarization switching in the ubiquitous Pb(Zr,Ti)O-3 [PZT] ceramics. The origin of the donor-dopant effects is not entirely clear. (Pb,Ba)ZrO ...
While commonly used piezoelectric materials contain lead, non-hazardous, high-performance piezoelectrics are yet to be discovered. Charged domain walls in ferroelectrics are considered inactive with regards to the piezoelectric response and, therefore, are ...
The electromechanical coupling in ferroelectric materials is controlled by several coexisting structural phenomena which can include piezoelectric lattice strain, 180 degrees and non-180 degrees domain wall motion, and interphase boundary motion. The struc ...