Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...
Object detection plays a critical role in various computer vision applications, encompassing
domains like autonomous vehicles, object tracking, and scene understanding. These applica-
tions rely on detectors that generate bounding boxes around known object ...
Human motion analysis and synthesis is integral to many computer vision applications, from autonomous driving to sports analysis. In this thesis, we address several problems in this domain. First we consider active viewpoint selection for pose estimation w ...
Data augmentation has proven its usefulness to improve model generalization and performance. While it is commonly applied in computer vision application when it comes to multi-view systems, it is rarely used. Indeed geometric data augmentation can break th ...
Single-photon avalanche diodes (SPADs) are novel image sensors that record the arrival of individual photons at extremely high temporal resolution. In the past, they were only available as single pixels or small-format arrays, for various active imaging ap ...
We address the problem of segmenting anomalies and unusual obstacles in road scenes for the purpose of self-driving safety.
The objects in question are not present in the common training sets as it is not feasible to collect and annotate examples for every ...
Taking advantage of Capella's ability to dwell on a target for an extended period of time (nominally 30s) in its spotlight (SP) mode, an unsupervised methodology for detecting moving targets in this data is presented in this paper. By colourizing short seg ...
In the context of automatic visual inspection of infrastructures by drones, Deep Learning (DL) models are used to automatically process images for fault diagnostics. While explainable Artificial Intelligence (AI) algorithms can provide explanations to asse ...
To obtain a more complete understanding of material microstructure at the nanoscale and to gain profound insights into their properties, there is a growing need for more efficient and precise methods that can streamline the process of 3D imaging using a tr ...