Publication

Étude des fondements physiques possibles des concepts numériques utilisés dans les méthodes d'acoustique géométrique

Thomas Guignard
2006
Thèse EPFL
Résumé

The subject of the work presented here is the study of the acoustical ray method, which aims at describing a pressure field by an analogy with light rays. The concept of a wave is therefore replaced by the concept of "acoustical rays", whose paths through the domain under study are described by their reflections off the obstacles they encounter. The postulate of specular reflection is made : only the direct neighborhood of the point where the incoming ray meets the obstacle is taken into account. When absorption is considered at that particular point, it is represented by a localized acoustic impedance. Such a method, also called geometrical acoustics, is widely used for the computation of the acoustical characteristics of a room, for example the reverberation time in a concert hall, etc. In this case, the dimensions of the domain under study are several orders of magnitude larger than the considered wavelengths. Moreover, the information sought resides mostly in the first reflections. In these circumstances, the quality of prediction obtained is satisfactory, and is experimentally verified. Conversely, in geometries of smaller size and when a solution combining a greater number of reflections is required, simulations show a discrepancy between results obtained with the geometrical solution and those obtained via another method, such as finite elements. These differences, mostly in terms of frequency shifts of resonance peaks, are particularly visible in positions near the walls of the domain under study. With the aim of eventually finding ways to improve the prediction quality of the geometrical method, the work proposes a substitute for the intuitive origin of image sources. In fact, a parallel with a form of a solution of the Helmholtz equation by the integral method is shown. With this novel representation, image sources appear to have a more rigorous base than with the optical analogy. Before being able to improve a method, a deep understanding of its foundations is required. Here, the study of two phenomena occurring in reflection problems is proposed, and their influence on the results obtained with the geometrical method is observed. First, the very concept of image sources, which give rise to acoustical rays, is studied. By doing this, an a priori new description of image sources is proposed, which shows a close parallel between the representation of the acoustical field by a sum of rays emitted by image sources and a solution obtained by the integral method. Secondly, the validity of non locally reacting wave reflection, which is implied in geometrical acoustical methods, is studied. This is achieved by replacing the specular (local) coefficient classically used to describe reflection upon an obstacle with a non local coefficient, obtained by identification from an integral representation. Both methods are evaluated in geometries of growing complexity : spaces bounded by one, then two walls, and finally closed by several walls. This enables the study of an increasing number of reflections.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Proximité ontologique
Concepts associés (40)
Optique géométrique
L’optique géométrique est une branche de l'optique qui s'appuie notamment sur le modèle du rayon lumineux. Cette approche simple permet entre autres des constructions géométriques d’images, d’où son nom. Elle constitue l'outil le plus flexible et le plus efficace pour traiter les systèmes dioptriques et catadioptriques. Elle permet ainsi d'expliquer la formation des images. L'optique géométrique (la première théorie optique formulée) se trouve validée a posteriori par l'optique ondulatoire, en faisant l'approximation que tous les éléments utilisés sont de grande dimension devant la longueur d'onde de la lumière.
Specular reflection
Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface. The law of reflection states that a reflected ray of light emerges from the reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side of the surface normal in the plane formed by the incident and reflected rays. This behavior was first described by Hero of Alexandria (AD c. 10–70). Later, Alhazen gave a complete statement of the law of reflection.
Réflexion (physique)
vignette|upright=1|La loi de la réflexion en physique.|alt=Le rayon incident arrive sur la surface et est réfléchi. Les angles d'incidence et de réflexion sont identiques. vignette|Matsimäe Pühajärv, Estonie. La réflexion en physique est le brusque changement de direction d'une onde à l'interface de deux milieux. Après réflexion, l'onde reste dans son milieu de propagation initial. De multiples types d'ondes peuvent subir une réflexion.
Afficher plus
Publications associées (69)

Quantifying the Unknown: Data-Driven Approaches and Applications in Energy Systems

Paul Scharnhorst

In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
EPFL2024

Light Path Gradients for Forward and Inverse Rendering

Tizian Lucien Zeltner

Physically based rendering is a process for photorealistic digital image synthesis and one of the core problems in computer graphics. It involves simulating the light transport, i.e. the emission, propagation, and scattering of light through a virtual scen ...
EPFL2021

Over-the-Air Computation via Reconfigurable Intelligent Surface

Yuning Jiang, Wei Chen

Over-the-air computation (AirComp) is a disruptive technique for fast wireless data aggregation in Internet of Things (IoT) networks via exploiting the waveform superposition property of multiple-access channels. However, the performance of AirComp is bott ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021
Afficher plus
MOOCs associés (32)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.