Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper, a probabilistic measure for reliability of speaker verification under noisy acoustic conditions is proposed. A Bayesian network is used to estimate a probability for verification errors, given the GMM-based speaker verification system output and additional information about the level of acoustic noise. In particular, the log-likelihood ratio and a signal-to-noise related feature are used to account for the adverse acoustic conditions. The probabilistic measure is subsequently employed in governing a repair sequence of trials for acquiring additional speech presentations which are less likely to lead to unreliable verification. The potential of the proposed method is tested through cross-validation experiments. Finally, the benefits of the repair sequence in terms of verification accuracy is evaluated on a noisy environment speaker verification task.
Haitham Al Hassanieh, Jiaming Wang, Junfeng Guan