Codes de parité à faible densitéDans la théorie de l'information, un contrôle de parité de faible densité LDPC est un code linéaire correcteur d'erreur, permettant la transmission d'information sur un canal de transmission bruité. LDPC est construit en utilisant un graphe biparti clairsemé. Les codes LDPC ont une capacité approchant la limite théorique. À l'aide de techniques itératives de propagation d'information sur la donnée transmise et à décoder, les codes LDPC peuvent être décodés en un temps proportionnel à leur longueur de bloc.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Linear network codingIn computer networking, linear network coding is a program in which intermediate nodes transmit data from source nodes to sink nodes by means of linear combinations. Linear network coding may be used to improve a network's throughput, efficiency, and scalability, as well as reducing attacks and eavesdropping. The nodes of a network take several packets and combine for transmission. This process may be used to attain the maximum possible information flow in a network.
Turbo codeTurbo code est le nom générique d'un code correcteur imaginé dans les années 1990, qui permet de s'approcher aussi près qu'on le souhaite de la limite de Shannon. Les turbo codes représentent une percée majeure dans le domaine des communications numériques. Ils sont utilisés dans de nombreux standards de téléphonie mobile (UMTS, LTE), de communications par satellites (Inmarsat, DVB-RCS) ou de courants porteurs en ligne. Leur inventeur est Claude Berrou qui breveta cette technologie pour le compte de France Télécom et TDF.
Taux d'expansion (théorie des graphes)En mathématiques, et plus particulièrement en théorie des graphes, le taux d'expansion d'un graphe est une mesure de connectivité de ce graphe. Informellement, un grand taux d'expansion veut dire que n'importe quel sous-ensemble de sommets relativement petit possède beaucoup de connexions avec le reste du graphe. Cette mesure est surtout utilisée en raison des propriétés intéressantes des graphes ayant un fort taux d'expansion, parfois appelés graphes expanseurs. On les retrouve notamment en informatique théorique.
Graph powerIn graph theory, a branch of mathematics, the kth power G^k of an undirected graph G is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in G is at most k. Powers of graphs are referred to using terminology similar to that of exponentiation of numbers: G^2 is called the square of G, G^3 is called the cube of G, etc. Graph powers should be distinguished from the products of a graph with itself, which (unlike powers) generally have many more vertices than the original graph.
Grundy numberIn graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available color, using a vertex ordering chosen to use as many colors as possible. Grundy numbers are named after P. M. Grundy, who studied an analogous concept for directed graphs in 1939. The undirected version was introduced by .
Méthode de décodageEn théorie des codes, il existe plusieurs méthodes standards pour décoder des mots de code transmis sur un canal de communication avec bruit. Ce sont donc des techniques qui servent à effectuer l'opération inverse du codage de canal. Le décodage par vote majoritaire. Le décodage par observateur idéal. Le décodage par probabilité maximale. Le décodage par distance minimale. Le décodage par syndrome est une méthode de décodage très efficace pour un code linéaire sur un canal de communication avec bruit.
Topologie de la droite réellethumb|Richard Dedekind (1831 - 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l'ensemble des nombres réels, des définitions précises aux notions de limite et de continuité. Historiquement, ces notions se sont développées autour de la notion de nombre (approcher des nombres comme la racine carrée de deux ou pi par d'autres plus « maniables ») et de la géométrie de la droite (à laquelle l'espace topologique des nombres réels peut être assimilé), du plan et de l'espace usuels.
Code préfixeUn code préfixe (ou code instantané) est un code ayant la particularité de ne posséder aucun mot du code ayant pour préfixe un autre mot du code. Autrement dit, aucun mot du code (ou symbole) d'un code préfixe ne peut se prolonger pour donner un autre mot du code (ou symbole). C'est une propriété souvent recherchée pour les codes à longueur variable, afin de pouvoir les décoder lorsque plusieurs symboles sont concaténés les uns aux autres sans qu'il soit nécessaire d'utiliser des séparateurs (les séparateurs rendent préfixes des codes non préfixes).