The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space, Kashiwara-Schapira have recently in ...
Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...
In this thesis, we give a modern treatment of Dwyer's tame homotopy theory using the language of ∞-categories.
We introduce the notion of tame spectra and show it has a concrete algebraic description.
We then carry out a study of ∞-operads an ...
In a world that seeks to describe, codify and quantify everything, and particularly our viscerality and its interactions with our actual and digital environments, can we find interstitial spaces, currently unseen, unobserved and unlegislated, where we migh ...
Since the birth of Information Theory, researchers have defined and exploited various information measures, as well as endowed them with operational meanings. Some were born as a "solution to a problem", like Shannon's Entropy and Mutual Information. Other ...
In this thesis, we study interactions between algebraic and coalgebraic structures in infinity-categories (more precisely, in the quasicategorical model of (infinity, 1)-categories). We define a notion of a Hopf algebra H in an E-2-monoidal infinity-catego ...
Collapsing cell complexes was first introduced in the 1930's as a way to deform a space into a topological-equivalent subspace with a sequence of elementary moves. Recently, discrete Morse theory techniques provided an efficient way to construct deformatio ...
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...
Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model ...
Twisted topological Hochschild homology of Cn-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this paper we intr ...