Combined high-fusion performance and long-pulse operation is one of the key integration challenges for fusion energy development in magnetic devices. Addressing these challenges requires an integrated vision of physics and engineering aspects with the purp ...
In order to cope with the decarbonization challenge faced by many countries, fusion is one of the few alternatives to fossil fuels for the production of electricity. Two devices invented in the middle of the previous century have emerged as the most promis ...
Nuclear fusion presents a promising clean energy source to mitigate future energy crises, with magnetic confinement fusion well-positioned to provide a baseload scenario to power future reactors. The unmitigated power exhaust of such reactors threatens its ...
Phase contrast imaging (PCI) is an established and powerful technique for measuring density fluctuations in plasmas and has been successfully applied to several fusion devices. Rooted in a concept first developed for microscopy, PCI belongs to the category ...
This paper extends a 1D dynamic physics-based model of the scrape-off layer (SOL) plasma, DIV1D, to include the core SOL and possibly a second target. The extended model is benchmarked on 1D mapped SOLPS-ITER simulations to find input settings for DIV1D th ...
The pre-thermal quench (pre-TQ) dynamics of a pure deuterium ( D 2 ) shattered pellet injection (SPI) into a 3 MA / 7 MJ JET H-mode plasma is studied via 3D non-linear MHD modelling with the JOREK code. The interpretative modelling captures the overall evo ...
In magnetic fusion devices, error field (EF) sources, spurious magnetic field perturbations, need to be identified and corrected for safe and stable (disruption-free) tokamak operation. Within Work Package Tokamak Exploitation RT04, a series of studies hav ...
The performance of magnetic confinement fusion devices, such as tokamaks, is strongly correlated to the phenomena that occur in the boundary region of the plasma core that faces the wall of the device. The dominant cross-field transport mechanisms from the ...
Plasma turbulence plays a fundamental role in determining the performances of magnetic confinement fusion devices, such as tokamaks. Advances in computer science, combined with the development of efficient physical models, have significantly improved our u ...
Plasmas with negative triangularity (NT) shape have been recently shown to be able to achieve H-mode levels of confinement in L-mode, avoiding detrimental edge localised modes. Therefore, this plasma geometry is now studied as a possible viable option for ...