Bacteria are ubiquitous single cellular organisms. Compared to eukaryotic cells, bacteria have two unique characteristics: the membrane-less nucleoid and the cell wall built of peptidoglycan (PG). In most bacteria, a single circular chromosome is compacted ...
DNA replication in bacteria takes place on highly compacted chromosomes, where segregation, transcription, and repair must occur simultaneously. Within this dynamic environment, colocalization of sister replisomes has been observed in many bacterial specie ...
Base excision repair enzymes (BERs) detect and repair oxidative DNA damage with efficacy despite the small size of the defects and their often only minor structural impact. A charge transfer (CT) model for rapid scanning of DNA stretches has been evoked to ...
DNA damage signaling following DNA double-strand breaks (DSBs) involves numerous regulating proteins, which dynamically recognize ('read') and alter ('write' or 'erase') histone post-translational modifications (PTMs). Among these PTMs, the ubiquitin syste ...
The proliferation of microscopy methods for live-cell imaging offers many new possibilities for users but can also be challenging to navigate. The prevailing challenge in live-cell fluorescence microscopy is capturing intra-cellular dynamics while preservi ...
As the fundamental machinery orchestrating cellular functions, proteins influence the state of every cell profoundly. As cells exhibit significant variations from one to another, analyzing the proteome on a single-cell level is imperative to unravel their ...
The local physical properties - such as shape and flexibility - of the DNA double-helix is today widely believed to be influenced by nucleic acid sequence in a non-trivial way. Furthermore, there is strong evidence that these properties play a role in many ...
DNA mechanics plays a crucial role in many biological processes, including nucleosome positioning and protein-DNA interactions. It is believed that nature employs epigenetic modifications in DNA to further regulate gene expression. Moreover, double-strande ...
Telomeres are the nucleoprotein structures found at the ends of linear chromosomes. They ensure that the termini of chromosomes are not inappropriately recognized as sites of DNA damage, and are therefore crucial for genome stability. In spite of the heter ...
The COVID-19 pandemic has highlighted the necessity to develop fast, highly sensitive and selective virus detection methods. Surface-based DNA-biosensors are interesting candidates for this purpose. Functionalization of solid substrates with DNA must be pr ...